Abstract
Dynamic voltage and frequency scaling} (DVFS) is a means to adjust the computing capacity and power consumption of computing systems to the application demands. DVFS is generally useful to provide a compromise between computing demands and power consumption, especially in the areas of resource-constrained computing systems. Many modern processors support some form of DVFS.
In this article we focus on the development of an execution framework that provides light-weight DVFS support for reactive stream-processing systems (RSPS). RSPS are a common form of embedded control systems, operating in direct response to inputs from their environment. At the execution framework we focus on support for many-core scheduling for parallel execution of concurrent programs. We provide a DVFS strategy for RSPS that is simple and lightweight, to be used for dynamic adaptation of the power consumption at runtime. The simplicity of the DVFS strategy became possible by sole focus on the application domain of RSPS. The presented DVFS strategy does not require specific assumptions about the message arrival rate or the underlying scheduling method.
While DVFS is a very active field, in contrast to most existing research, our approach works also for platforms like many-core processors, where the power settings typically cannot be controlled individually for each computational unit. We also support dynamic scheduling with variable workload. While many research results are provided with simulators, in our approach we present a parallel execution framework with experiments conducted on real hardware, using the SCC many-core processor. The results of our experimental evaluation confirm that our simple DVFS strategy provides potential for significant energy saving on RSPS.
In this article we focus on the development of an execution framework that provides light-weight DVFS support for reactive stream-processing systems (RSPS). RSPS are a common form of embedded control systems, operating in direct response to inputs from their environment. At the execution framework we focus on support for many-core scheduling for parallel execution of concurrent programs. We provide a DVFS strategy for RSPS that is simple and lightweight, to be used for dynamic adaptation of the power consumption at runtime. The simplicity of the DVFS strategy became possible by sole focus on the application domain of RSPS. The presented DVFS strategy does not require specific assumptions about the message arrival rate or the underlying scheduling method.
While DVFS is a very active field, in contrast to most existing research, our approach works also for platforms like many-core processors, where the power settings typically cannot be controlled individually for each computational unit. We also support dynamic scheduling with variable workload. While many research results are provided with simulators, in our approach we present a parallel execution framework with experiments conducted on real hardware, using the SCC many-core processor. The results of our experimental evaluation confirm that our simple DVFS strategy provides potential for significant energy saving on RSPS.
Original language | English |
---|---|
Journal | Eurasip Journal on Embedded Systems |
Volume | 14 |
DOIs | |
Publication status | Published - 13 Jun 2016 |
Keywords
- embedded systems
- power optimisation
- parallel computing
- scc
- many-core processor