TY - JOUR
T1 - Dynamics of relativistic radio jets in asymmetric environments
AU - Yates-Jones, Patrick M.
AU - Shabala, Stanislav S.
AU - Krause, Martin G. H.
N1 - © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stab2917
PY - 2021/12/1
Y1 - 2021/12/1
N2 - We have carried out relativistic three-dimensional simulations of high-power radio sources propagating into asymmetric cluster environments. We offset the environment by 0 or 1 core radii (equal to 144 kpc), and incline the jets by 0, 15, or 45{\deg} away from the environment centre. The different environment encountered by each radio lobe provides a unique opportunity to study the effect of environment on otherwise identical jets. We find that the jets become unstable towards the end of the simulations, even with a Lorentz factor of 5; they nevertheless develop typical FR II radio morphology. The jets propagating into denser environments have consistently shorter lobe lengths and brighter hotspots, while the axial ratio of the two lobes is similar. We reproduce the recently reported observational anti-correlation between lobe length asymmetry and environment asymmetry, corroborating the notion that observed large-scale radio lobe asymmetry can be driven by differences in the underlying environment.
AB - We have carried out relativistic three-dimensional simulations of high-power radio sources propagating into asymmetric cluster environments. We offset the environment by 0 or 1 core radii (equal to 144 kpc), and incline the jets by 0, 15, or 45{\deg} away from the environment centre. The different environment encountered by each radio lobe provides a unique opportunity to study the effect of environment on otherwise identical jets. We find that the jets become unstable towards the end of the simulations, even with a Lorentz factor of 5; they nevertheless develop typical FR II radio morphology. The jets propagating into denser environments have consistently shorter lobe lengths and brighter hotspots, while the axial ratio of the two lobes is similar. We reproduce the recently reported observational anti-correlation between lobe length asymmetry and environment asymmetry, corroborating the notion that observed large-scale radio lobe asymmetry can be driven by differences in the underlying environment.
KW - astro-ph.HE
U2 - 10.1093/mnras/stab2917
DO - 10.1093/mnras/stab2917
M3 - Article
SN - 0035-8711
VL - 508
SP - 5239
EP - 5250
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -