TY - JOUR
T1 - EDGE: A new model for Nuclear Star Cluster formation in dwarf galaxies
AU - Gray, Emily I.
AU - Read, Justin I.
AU - Taylor, Ethan
AU - Orkney, Matthew D. A.
AU - Rey, Martin P.
AU - Yates, Robert M.
AU - Kim, Stacy Y.
AU - Noël, Noelia E. D.
AU - Agertz, Oscar
AU - Andersson, Eric
AU - Pontzen, Andrew
N1 - © 2025 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/
PY - 2025/4/1
Y1 - 2025/4/1
N2 - Nuclear Star Clusters (NSCs) are amongst the densest stellar systems in the Universe and are found at the centres of many bright spiral and elliptical galaxies, and up to ${\sim}$40% of dwarf galaxies. However, their formation mechanisms, and possible links to globular clusters (GCs), remain debated. This paper uses the EDGE simulations - a collection of zoom-in, cosmological simulations of isolated dwarf galaxies -- to present a new formation mechanism for NSCs. We find that, at a gas spatial and mass resolution of ${\sim}3\,$pc and ${\sim}161$ M$_\odot$, respectively, NSCs naturally emerge in a subset of our EDGE dwarfs with redshift-zero halo masses of $\rm{M}_{\rm{r}200\rm{c}} \sim 5 \times 10^9$ M$_\odot$. These dwarfs are quenched by reionisation, but retain a significant reservoir of gas that is unable to cool and form stars. Sometime after reionisation, the dwarfs then undergo a major (${\sim}$1:1) merger that excites rapid gas cooling, leading to a significant starburst. An NSC forms in this starburst that then quenches star formation thereafter. The result is a nucleated dwarf that has two stellar populations with distinct age: one pre-reionisation and one post-reionisation. Our mechanism is unique for two key reasons. Firstly, the low mass of the host dwarf means that NSCs, formed in this way, can accrete onto galaxies of almost all masses, potentially seeding the formation of NSCs everywhere. Secondly, our model predicts that NSCs should have at least two stellar populations with a large ($\gtrsim$1 billion year) age separation. This yields a predicted colour magnitude diagram for our nucleated dwarfs that has two distinct main sequence turnoffs. Several GCs orbiting the Milky Way, including Omega Centauri and M54, show exactly this behaviour, suggesting that they may, in fact, be accreted NSCs.
AB - Nuclear Star Clusters (NSCs) are amongst the densest stellar systems in the Universe and are found at the centres of many bright spiral and elliptical galaxies, and up to ${\sim}$40% of dwarf galaxies. However, their formation mechanisms, and possible links to globular clusters (GCs), remain debated. This paper uses the EDGE simulations - a collection of zoom-in, cosmological simulations of isolated dwarf galaxies -- to present a new formation mechanism for NSCs. We find that, at a gas spatial and mass resolution of ${\sim}3\,$pc and ${\sim}161$ M$_\odot$, respectively, NSCs naturally emerge in a subset of our EDGE dwarfs with redshift-zero halo masses of $\rm{M}_{\rm{r}200\rm{c}} \sim 5 \times 10^9$ M$_\odot$. These dwarfs are quenched by reionisation, but retain a significant reservoir of gas that is unable to cool and form stars. Sometime after reionisation, the dwarfs then undergo a major (${\sim}$1:1) merger that excites rapid gas cooling, leading to a significant starburst. An NSC forms in this starburst that then quenches star formation thereafter. The result is a nucleated dwarf that has two stellar populations with distinct age: one pre-reionisation and one post-reionisation. Our mechanism is unique for two key reasons. Firstly, the low mass of the host dwarf means that NSCs, formed in this way, can accrete onto galaxies of almost all masses, potentially seeding the formation of NSCs everywhere. Secondly, our model predicts that NSCs should have at least two stellar populations with a large ($\gtrsim$1 billion year) age separation. This yields a predicted colour magnitude diagram for our nucleated dwarfs that has two distinct main sequence turnoffs. Several GCs orbiting the Milky Way, including Omega Centauri and M54, show exactly this behaviour, suggesting that they may, in fact, be accreted NSCs.
KW - astro-ph.GA
U2 - 10.1093/mnras/staf521
DO - 10.1093/mnras/staf521
M3 - Article
SN - 0035-8711
VL - 539
SP - 1167
EP - 1179
JO - Monthly Notices of the Royal Astronomical Society (MNRAS)
JF - Monthly Notices of the Royal Astronomical Society (MNRAS)
IS - 2
M1 - staf521
ER -