TY - JOUR
T1 - Effect of surfactants and drug load on physico-mechanical and dissolution properties of nanocrystalline tadalafil-loaded oral films
AU - Vuddanda, Parameswara Rao
AU - Montenegro-Nicolini, Miguel
AU - Morales, Javier O.
AU - Velaga, Sitaram
PY - 2017/11/15
Y1 - 2017/11/15
N2 - The aim of the present work was to prepare tadalafil (TDF) nanocrystals-loaded oral polymeric films (OFs) and investigate the effect of hydrophilic surfactants and drug loads on the physico-mechanical and dissolution properties. The nanosuspensions of TDF were prepared by high shear homogenization. HPMC based placebo casting film gel was prepared and mixed with TDF nanosuspensions. Films were casted using an automated film applicator and dried at 60 °C for 45 min. Particle size (PS), polydispersity index (PDI), and zeta potential (ZP) of TDF nanosuspensions were measured in a Zetasizer. The films were characterized using SEM, AFM, DSC, TGA and PXRD. The mechanical properties and in vitro drug release were determined using standard methods. TDF existed in crystalline form and the particles remained in the nano-range in redispersed films. TDF nanocrystals were embedded in the polymeric matrix and the drug loaded films were rough on the surface. Mechanical properties of the films varied with changes in drug load and surfactant. Significant changes in the disintegration times were noticed in films containing surfactants compared to surfactant-free films. About 80% of the drug release was observed between 3 and 30 min. TPGS showed better TDF release from the films at different drug loads. Chemical compounds Hydroxy propyl methyl cellulose (PubChem CID: 57503849); Glycerol (PubChem CID: 753); Pluronic F-68 (PubChem CID: 24751); Vitamin E TPGS (PubChem CID: 71406).
AB - The aim of the present work was to prepare tadalafil (TDF) nanocrystals-loaded oral polymeric films (OFs) and investigate the effect of hydrophilic surfactants and drug loads on the physico-mechanical and dissolution properties. The nanosuspensions of TDF were prepared by high shear homogenization. HPMC based placebo casting film gel was prepared and mixed with TDF nanosuspensions. Films were casted using an automated film applicator and dried at 60 °C for 45 min. Particle size (PS), polydispersity index (PDI), and zeta potential (ZP) of TDF nanosuspensions were measured in a Zetasizer. The films were characterized using SEM, AFM, DSC, TGA and PXRD. The mechanical properties and in vitro drug release were determined using standard methods. TDF existed in crystalline form and the particles remained in the nano-range in redispersed films. TDF nanocrystals were embedded in the polymeric matrix and the drug loaded films were rough on the surface. Mechanical properties of the films varied with changes in drug load and surfactant. Significant changes in the disintegration times were noticed in films containing surfactants compared to surfactant-free films. About 80% of the drug release was observed between 3 and 30 min. TPGS showed better TDF release from the films at different drug loads. Chemical compounds Hydroxy propyl methyl cellulose (PubChem CID: 57503849); Glycerol (PubChem CID: 753); Pluronic F-68 (PubChem CID: 24751); Vitamin E TPGS (PubChem CID: 71406).
KW - HPMC
KW - Nanocrystals
KW - Oral films
KW - Poloxamer
KW - Surfactants
KW - Tadalafil
KW - Vitamin E TPGS
UR - http://www.scopus.com/inward/record.url?scp=85028524027&partnerID=8YFLogxK
U2 - 10.1016/j.ejps.2017.08.019
DO - 10.1016/j.ejps.2017.08.019
M3 - Article
C2 - 28823854
AN - SCOPUS:85028524027
SN - 0928-0987
VL - 109
SP - 372
EP - 380
JO - European Journal of Pharmaceutical Sciences
JF - European Journal of Pharmaceutical Sciences
ER -