Effects of the Tubulin-Colchicine Complex on Microtubule Dynamic Instability

A. Vandecandelaere, S.R. Martin, M. Schilstra, P.M. Bayley

    Research output: Contribution to journalArticlepeer-review

    34 Citations (Scopus)

    Abstract

    The effects of the tubulin-olchicine complex (Tu-Col) on the dynamic behavior of microtubules have been examined under steady-state conditions in vitro. The addition of Tu-Col to tubulin microtubules at steady state results in only partial microtubule disassembly. Nevertheless, both the rate and the extent of tubulin exchange into microtubules are markedly suppressed by concentrations of Tu-Col which are low relative to the total amount of free tubulin. In addition, the time-dependent changes in microtubule length distribution, characteristic of dynamic instability, are suppressed by the addition of Tu-Col. Examination by video-enhanced dark-field microscopy of individual microtubules in the presence of Tu-Col shows that the principal effect of this complex is to reduce the growth rate at both ends of the microtubule. We have used computer simulation to rationalize the action of Tu-Col in terms of its effects on the experimentally observable parameters, namely, the rates of growth and shortening and the mean lifetimes of growth and shortening, which provide an empirical description of the dynamic behavior of microtubules. The results have been interpreted within the framework of the lateral cap formulation for microtubule dynamic instability [Martin, S. R., Schilstra, M. J., & Bayley, P. M. (1993) Biophys. J. 65, 578-5961, The simplest model mechanism requires only that Tu-Col binds to the microtubule end and inhibits further addition reactions in either the 5-start or the %start direction of the microtubule lattice. Monte Carlo simulations show that Tu-Col can, in this way, cause major suppression of the dynamic transitions of microtubules without inducing bulk microtubule disassembly. This type of mechanism could be important for the regulation of microtubule dynamics in vivo.
    Original languageEnglish
    Pages (from-to)2792-2801
    JournalBiochemistry
    Volume33
    Issue number10
    DOIs
    Publication statusPublished - 1994

    Fingerprint

    Dive into the research topics of 'Effects of the Tubulin-Colchicine Complex on Microtubule Dynamic Instability'. Together they form a unique fingerprint.

    Cite this