TY - JOUR
T1 - Energetics of Deep Alpine Valleys in Pooling and Draining Configurations
AU - Arduini, G.
AU - Chemel, Charles
AU - Staquet, C.
N1 - This is an Open Access article licensed under a Creative Commons
Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).
PY - 2017/7/1
Y1 - 2017/7/1
N2 - The Weather Research and Forecast numerical model is used to investigate the nocturnal atmospheric boundary layer in a valley that opens either on a wider valley (draining configuration) or on a narrower valley (pooling configuration). One draining case and three weak to strong pooling cases are considered. Results show that the structure of the nocturnal boundary layer is substantially different for the draining and pooling configurations. The greater the pooling, the deeper and colder is the boundary layer. Down-valley winds are weaker for pooling and draining configurations than in an equivalent valley opening directly on a plain. For the strong pooling case, an up-valley flow develops from the narrower to the wider valley during the evening transition, affecting the mass budget of the wider valley during that period. Considering the heat budget of the valley system, the contribution of the diabatic processes, when appropriately weighted, hardly varies along the valley axis. Conversely, the contribution of advection varies along the valley axis: it decreases for a pooling configuration and increases for a draining configuration. Consequently, for a pooling configuration, the heat transfer between the valley and the plain is reduced, thereby increasing the temperature difference between them. For the strong pooling case, this temperature difference can be explained by the valley-volume effect once the down-valley flow has developed. This occurs in a valley when the `extra' heat loss within the valley due to the surface sensible heat flux balances the heat input due to advection.
AB - The Weather Research and Forecast numerical model is used to investigate the nocturnal atmospheric boundary layer in a valley that opens either on a wider valley (draining configuration) or on a narrower valley (pooling configuration). One draining case and three weak to strong pooling cases are considered. Results show that the structure of the nocturnal boundary layer is substantially different for the draining and pooling configurations. The greater the pooling, the deeper and colder is the boundary layer. Down-valley winds are weaker for pooling and draining configurations than in an equivalent valley opening directly on a plain. For the strong pooling case, an up-valley flow develops from the narrower to the wider valley during the evening transition, affecting the mass budget of the wider valley during that period. Considering the heat budget of the valley system, the contribution of the diabatic processes, when appropriately weighted, hardly varies along the valley axis. Conversely, the contribution of advection varies along the valley axis: it decreases for a pooling configuration and increases for a draining configuration. Consequently, for a pooling configuration, the heat transfer between the valley and the plain is reduced, thereby increasing the temperature difference between them. For the strong pooling case, this temperature difference can be explained by the valley-volume effect once the down-valley flow has developed. This occurs in a valley when the `extra' heat loss within the valley due to the surface sensible heat flux balances the heat input due to advection.
KW - boundary layer
KW - valley/mountain flows
KW - numerical analysis/modelling
U2 - 10.1175/JAS-D-16-0139.1
DO - 10.1175/JAS-D-16-0139.1
M3 - Article
SN - 0022-4928
VL - 74
SP - 2105
EP - 2124
JO - Journal of the Atmospheric Sciences
JF - Journal of the Atmospheric Sciences
ER -