TY - JOUR
T1 - Energy regeneration from suspension dynamic modes and self-powered actuation
AU - Khoshnoud, Farbod
AU - Yuchi Zhang, Yuchi
AU - Ray Shimura, Ray
AU - Amir Shahba, Amir
AU - Guangming Jin, Guangming
AU - Pissanidis, Georgios
AU - Chen, Yong
AU - De Silva, Clarence W.
N1 - Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2015/10/31
Y1 - 2015/10/31
N2 - This paper concerns energy harvesting from vehicle suspension systems. The generated power associated with bounce, pitch and roll modes of vehicle dynamics is determined through analysis. The potential values of power generation from these three modes are calculated. Next, experiments are carried out using a vehicle with a four jack shaker rig to validate the analytical values of potential power harvest. For the considered vehicle, maximum theoretical power values of 1.1kW, 0.88kW and 0.97kW are associated with the bounce, pitch and roll modes, respectively, at 20 Hz excitation frequency and peak to peak displacement amplitude of 5 mm at each wheel, as applied by the shaker. The corresponding experimentally power values are 0.98kW, 0.74kW and 0.78kW. An experimental rig is also developed to study the behavior of regenerative actuators in generating electrical power from kinetic energy. This rig represents a quarter-vehicle suspension model where the viscous damper in the shock absorber system is replaced by a regenerative system. The rig is able to demonstrate the actual electrical power that can be harvested using a regenerative system. The concept of self-powered actuation using the harvested energy from suspension is discussed with regard to applications of self-powered vibration control. The effect of suspension energy regeneration on ride comfort and road handling is presented in conjunction with energy harvesting associated with random road excitations.
AB - This paper concerns energy harvesting from vehicle suspension systems. The generated power associated with bounce, pitch and roll modes of vehicle dynamics is determined through analysis. The potential values of power generation from these three modes are calculated. Next, experiments are carried out using a vehicle with a four jack shaker rig to validate the analytical values of potential power harvest. For the considered vehicle, maximum theoretical power values of 1.1kW, 0.88kW and 0.97kW are associated with the bounce, pitch and roll modes, respectively, at 20 Hz excitation frequency and peak to peak displacement amplitude of 5 mm at each wheel, as applied by the shaker. The corresponding experimentally power values are 0.98kW, 0.74kW and 0.78kW. An experimental rig is also developed to study the behavior of regenerative actuators in generating electrical power from kinetic energy. This rig represents a quarter-vehicle suspension model where the viscous damper in the shock absorber system is replaced by a regenerative system. The rig is able to demonstrate the actual electrical power that can be harvested using a regenerative system. The concept of self-powered actuation using the harvested energy from suspension is discussed with regard to applications of self-powered vibration control. The effect of suspension energy regeneration on ride comfort and road handling is presented in conjunction with energy harvesting associated with random road excitations.
KW - Energy harvesting
KW - regenerative actuators
KW - self-powered systems
KW - vehicle dynamics
U2 - 10.1109/TMECH.2015.2392551
DO - 10.1109/TMECH.2015.2392551
M3 - Article
SN - 1083-4435
VL - 20
SP - 2513
EP - 2524
JO - IEEE/ASME Transactions on Mechatronics
JF - IEEE/ASME Transactions on Mechatronics
IS - 5
ER -