Abstract
The aerodynamic stability and control derivatives for a scaled Piper Cub J-3 remotely piloted aircraft are estimated here, principally using the Engineering Sciences Data Unit (ESDU) data items. These modern semi-empirical methods rely on the use of the aircraft's geometry and location of centre of mass to estimate the stability derivatives. The methods are a mixture of aerodynamic and aircraft stability theory with supportive experimental data. This paper describes a workflow for deriving a complete set of standard longitudinal and lateral/directional derivatives for the aircraft configuration. Work-arounds are given for issues dealing with extrapolation of data beyond empirical results and modeling equivalent straight-tapered planforms from highly elliptical wings. Static stability and dy namic derivatives are estimated and presented. The work is compared to the results from the semi-empirical method DATCOM and the vortex lattice method AVL and shows over-all agreement. Details on the construction of an average flight dynamics model are then discussed using a least squares optimising routine to generate a weighted average model.
Original language | English |
---|---|
Publication status | Published - 1 Aug 2012 |
Event | AIAA Guidance, Navigation and Control Conference - Hyatt Regency Hotel, Minneapolis, United States Duration: 13 Aug 2012 → 16 Aug 2012 file:///C:/Users/cs16ach/Downloads/GNC-AFM-MST-ASC%202012%20Final%20Program_FINAL%20v1.pdf |
Conference
Conference | AIAA Guidance, Navigation and Control Conference |
---|---|
Country/Territory | United States |
City | Minneapolis |
Period | 13/08/12 → 16/08/12 |
Internet address |
Keywords
- Aircraft modelling, Simulation