Abstract
The incidence of “acid attacks” (vitreolage) is a global concern, with those affected often receiving lifelong medical care due to physical and psychological damage. The purpose of this study was to evaluate the effectiveness of several emergency skin decontamination approaches against concentrated (>99 %) sulphuric acid and to identify the effective window of opportunity for decontamination. The effects of four decontamination methods (dry, wet, combined dry & wet and cotton cloth) were assessed using an in vitro diffusion cell system containing dermatomed porcine skin. Sulphuric acid (H2SO4) was applied to the skin with decontamination protocols performed at 10 s, 30 s, 8 min, and 30 min post exposure. Skin damage was quantified by tritiated water (3H2O) penetration, receptor fluid pH and photometric stereo imaging (PSI), with quantification of residual sulphur (by SEM-EDS) to determine overall decontamination efficiency. Skin translucency (quantified by PSI) demonstrated a time-dependent loss of dermal tissue integrity from 10 s. Quantification of dermal sulphur content confirmed the rapid (exponential) decrease in decontamination efficiency with time. The pH of the water effluent indicated complete neutralisation of acid from the skin surface after 90 s of irrigation. Wet decontamination (either alone or immediately following dry decontamination) was the most effective intervention evaluated, although no decontamination technique was statistically effective after 30 s exposure to the acid. These data demonstrate the time-critical consequences of dermal exposure to concentrated sulphuric acid: we find no practical window of opportunity for acid decontamination, as physical damage is virtually instantaneous.
Original language | English |
---|---|
Pages (from-to) | 1968-1976 |
Number of pages | 9 |
Journal | Burns |
Volume | 50 |
Issue number | 8 |
Early online date | 8 Jul 2024 |
DOIs | |
Publication status | Published - 30 Nov 2024 |
Keywords
- Acid attack
- Decontamination
- Porcine skin
- Sulphuric acid
- Tritiated water
- Vitreolage