TY - JOUR
T1 - Experimental investigation of Harris Hawk optimization-based maximum power point tracking algorithm for photovoltaic system under partial shading conditions
AU - Gali, Vijayakumar
AU - Babu, B. Chitti
AU - Mutluri, Ramesh Babu
AU - Gupta, Manoj
AU - Gupta, Sunil Kumar
N1 - Publisher Copyright:
© 2021 John Wiley & Sons Ltd.
PY - 2023/3/1
Y1 - 2023/3/1
N2 - An integrated quasi Z-source DC–DC converter (qZSC) along with Harris Hawk Optimization (HHO)-based maximum power point tracking (MPPT) algorithm is proposed in this paper to increase the efficiency of photovoltaic (PV) system. The qZSC-based PV system experiences more voltage and current stress during partial shading conditions (PSCs), which causes overheat on qZSC components hence, degrade the efficiency and reliability of the system. Conventional swarm intelligence-based MPPT algorithms track the GMPP during PSC, but these take longer convergence time and fail to settle at GMPP. This uncertainty of finding the GMPP leads to fluctuations at output of qZSC, hence more stress on the converter components. HHO in tracking the Gmpp eliminates premature local MPPs, enhances convergence speed by expanding the search space for finding the GMPP. The proposed system is developed in MATLAB/Simulink environment and verified the results by developing prototype model in the laboratory by using C2000™ Piccolo™ Launch Pad™, LAUNCHXL-F28027 controller. The tracking performance of the proposed HHO-based MPPT algorithm is tested under fast changing and PSCs in comparison with perturb & observe (P&O), particle swarm optimization (PSO), and artificial bee colony (ABC)-based MPPT algorithms. The simulation and experimental results show that the proposed HHO-based MPPT algorithm is robust, tracks maximum power point in minimum convergence time in comparison with P&O, PSO and ABC-based MPPT algorithms. Hence, voltage and current fluctuations at the output of qZSC are reduced. Therefore, voltages and current stress on qZSC components are reduced and the efficiency of the system is improved.
AB - An integrated quasi Z-source DC–DC converter (qZSC) along with Harris Hawk Optimization (HHO)-based maximum power point tracking (MPPT) algorithm is proposed in this paper to increase the efficiency of photovoltaic (PV) system. The qZSC-based PV system experiences more voltage and current stress during partial shading conditions (PSCs), which causes overheat on qZSC components hence, degrade the efficiency and reliability of the system. Conventional swarm intelligence-based MPPT algorithms track the GMPP during PSC, but these take longer convergence time and fail to settle at GMPP. This uncertainty of finding the GMPP leads to fluctuations at output of qZSC, hence more stress on the converter components. HHO in tracking the Gmpp eliminates premature local MPPs, enhances convergence speed by expanding the search space for finding the GMPP. The proposed system is developed in MATLAB/Simulink environment and verified the results by developing prototype model in the laboratory by using C2000™ Piccolo™ Launch Pad™, LAUNCHXL-F28027 controller. The tracking performance of the proposed HHO-based MPPT algorithm is tested under fast changing and PSCs in comparison with perturb & observe (P&O), particle swarm optimization (PSO), and artificial bee colony (ABC)-based MPPT algorithms. The simulation and experimental results show that the proposed HHO-based MPPT algorithm is robust, tracks maximum power point in minimum convergence time in comparison with P&O, PSO and ABC-based MPPT algorithms. Hence, voltage and current fluctuations at the output of qZSC are reduced. Therefore, voltages and current stress on qZSC components are reduced and the efficiency of the system is improved.
KW - Harris Hawk optimization
KW - MPPT algorithms
KW - partial shading conditions
KW - photovoltaic system
KW - quasi Z-source DC–DC converter
UR - http://www.scopus.com/inward/record.url?scp=85113213582&partnerID=8YFLogxK
U2 - 10.1002/oca.2773
DO - 10.1002/oca.2773
M3 - Article
AN - SCOPUS:85113213582
SN - 0143-2087
VL - 44
SP - 577
EP - 600
JO - Optimal Control Applications and Methods
JF - Optimal Control Applications and Methods
IS - 2
ER -