Abstract
This article presented detailed measurements of the pressure distribution and heat transfer in a rotor–stator cavity with inlet of orifices on the rotating disk and two outlets at both low radius and high radius. Transient thermochromic liquid crystal (TLC) technique was employed to determine the convective heat transfer characteristics on the test surface of the rotating disk. Rotational Reynolds numbers (Reφ) ranging from 4.9 × 105 to 2.47 × 106 and dimensionless flow rate (Cw) between 6.9 × 103 and 2.72 × 104 were considered. Experimental results indicated that the characteristics of the pressure loss coefficient between the inlet and the outlet was strongly dependent on the Reφ and Cw. Under the current operating conditions, the heat transfer on the surface of the rotating disk was weakened at both in the upper and lower edges for the case of r/R = 0.775 due to the existence of the recirculation. Whereas the heat transfer were enhanced near the upper radius with relatively low flow rate and high rotational speed, as well as on the middle radius with relatively high flow rate and low rotational speed.
Original language | English |
---|---|
Pages (from-to) | 311-320 |
Number of pages | 10 |
Journal | International Journal of Heat and Mass Transfer |
Volume | 78 |
Early online date | 23 Jul 2014 |
DOIs | |
Publication status | Published - 30 Nov 2014 |