Experimental investigation on evaporative cooling coupled phase change energy storage technology for data centers under natural air cooling

Xiaoyan Yi, Hongli Xu, Ruiyong Mao, Hongwei Wu, Xiangkui Gao, Jiri Zhou, Zujing Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

To address the challenges of prolonged cooling air supply for data centers (DCs) in high-temperature climates, a cooling ventilation system combining evaporative cooling with phase change energy storage (PCES) under natural air cooling is proposed. Based on the summer high-temperature meteorological conditions in Gui'an New District, Guizhou Province, China, experiments were conducted using single-factor impact analysis and orthogonal experiments. These experiments investigated the effects of several control parameters such as inlet air temperature, inlet speed, inlet humidity, and spray flow on the cooling performance of the integrated cooling device, confirming the feasibility and high efficiency of this technology for green DCs. The results indicate that: (1) After being treated for temperature and humidity through the spray and the phase change plate (PCP) at both ends, the air temperature can be lowered by about 7 °C on average, and the relative humidity can be reduced by about 35 % over an 8-h period. (2) The temperature difference between inlet and outlet increases with the increase of inlet air temperature and spray flow but decreases with the increase of inlet air speed and inlet air humidity. (3) Through orthogonal experiments, the major and minor factors affecting the cooling performance, in order of significance, are inlet air temperature > inlet speed > spray flow > inlet humidity.
Original languageEnglish
Article number108127
Number of pages15
JournalInternational Communications in Heat and Mass Transfer (ICHMT)
Volume159
Early online date10 Oct 2024
DOIs
Publication statusE-pub ahead of print - 10 Oct 2024

Keywords

  • Data centers
  • Evaporative cooling
  • Natural cooling
  • Orthogonal experiments
  • Phase change energy storage

Fingerprint

Dive into the research topics of 'Experimental investigation on evaporative cooling coupled phase change energy storage technology for data centers under natural air cooling'. Together they form a unique fingerprint.

Cite this