Exploiting Aging Benefits for the Design of Reliable Drowsy Cache Memories

Daniele Rossi, Vasileios Tenentes, Sudhakar M. Reddy, Bashir M. Al-Hashimi, Andrew Brown

    Research output: Contribution to journalArticlepeer-review

    5 Citations (Scopus)
    75 Downloads (Pure)


    In this paper, we show how beneficial effects of aging on static power consumption can be exploited to design reliable drowsy cache memories adopting dynamic voltage scaling (DVS) to reduce static power. First, we develop an analytical model allowing designers to evaluate the long-term threshold voltage degradation induced by bias temperature instability (BTI) in a drowsy cache memory. Through HSPICE simulations, we demonstrate that, as drowsy memories age, static power reduction techniques based on DVS become more effective because of reduction in sub-threshold current due to BTI aging. We develop a simulation framework to evaluate trade-offs between static power and reliability, and a methodology to properly select the “drowsy” data retention voltage. We then propose different architectures of a drowsy cache memory allowing designers to meet different power and reliability constraints. The performed HSPICE simulations show a soft error rate and static noise margin improvement up to 20.8% and 22.7%, respectively, compared to standard aging unaware drowsy technique. This is achieved with a limited static power increase during the very early lifetime, and with static energy saving of up to 37% in 10 years of operation, at no or very limited hardware overhead.
    Original languageEnglish
    Number of pages13
    JournalIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
    Early online date19 Jul 2017
    Publication statusE-pub ahead of print - 19 Jul 2017


    • Drowsy memory
    • Dynamic Voltage Scaling
    • Bias Temperature Instability
    • Static power
    • Soft Error Rate
    • Noise margin


    Dive into the research topics of 'Exploiting Aging Benefits for the Design of Reliable Drowsy Cache Memories'. Together they form a unique fingerprint.

    Cite this