TY - JOUR
T1 - Exploiting Aging Benefits for the Design of Reliable Drowsy Cache Memories
AU - Rossi, Daniele
AU - Tenentes, Vasileios
AU - Reddy, Sudhakar M.
AU - Al-Hashimi, Bashir M.
AU - Brown, Andrew
N1 - Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
PY - 2017/7/19
Y1 - 2017/7/19
N2 - In this paper, we show how beneficial effects of aging on static power consumption can be exploited to design reliable drowsy cache memories adopting dynamic voltage scaling (DVS) to reduce static power. First, we develop an analytical model allowing designers to evaluate the long-term threshold voltage degradation induced by bias temperature instability (BTI) in a drowsy cache memory. Through HSPICE simulations, we demonstrate that, as drowsy memories age, static power reduction techniques based on DVS become more effective because of reduction in sub-threshold current due to BTI aging. We develop a simulation framework to evaluate trade-offs between static power and reliability, and a methodology to properly select the “drowsy” data retention voltage. We then propose different architectures of a drowsy cache memory allowing designers to meet different power and reliability constraints. The performed HSPICE simulations show a soft error rate and static noise margin improvement up to 20.8% and 22.7%, respectively, compared to standard aging unaware drowsy technique. This is achieved with a limited static power increase during the very early lifetime, and with static energy saving of up to 37% in 10 years of operation, at no or very limited hardware overhead.
AB - In this paper, we show how beneficial effects of aging on static power consumption can be exploited to design reliable drowsy cache memories adopting dynamic voltage scaling (DVS) to reduce static power. First, we develop an analytical model allowing designers to evaluate the long-term threshold voltage degradation induced by bias temperature instability (BTI) in a drowsy cache memory. Through HSPICE simulations, we demonstrate that, as drowsy memories age, static power reduction techniques based on DVS become more effective because of reduction in sub-threshold current due to BTI aging. We develop a simulation framework to evaluate trade-offs between static power and reliability, and a methodology to properly select the “drowsy” data retention voltage. We then propose different architectures of a drowsy cache memory allowing designers to meet different power and reliability constraints. The performed HSPICE simulations show a soft error rate and static noise margin improvement up to 20.8% and 22.7%, respectively, compared to standard aging unaware drowsy technique. This is achieved with a limited static power increase during the very early lifetime, and with static energy saving of up to 37% in 10 years of operation, at no or very limited hardware overhead.
KW - Drowsy memory
KW - Dynamic Voltage Scaling
KW - Bias Temperature Instability
KW - Static power
KW - Soft Error Rate
KW - Noise margin
U2 - 10.1109/TCAD.2017.2729399
DO - 10.1109/TCAD.2017.2729399
M3 - Article
SN - 0278-0070
JO - IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
JF - IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
ER -