Exploiting plume structure to decode gas source distance using metal-oxide gas sensors

Michael Schmuker, Viktor Bahr, Ramón Huerta

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)
80 Downloads (Pure)

Abstract

Estimating the distance of a gas source is important in many applications of chemical sensing, like e.g. environmental monitoring, or chemically-guided robot navigation. If an estimation of the gas concentration at the source is available, source proximity can be estimated from the time-averaged gas concentration at the sensing site. However, in turbulent environments, where fast concentration fluctuations dominate, comparably long measurements are required to obtain a reliable estimate. A lesser known feature that can be exploited for distance estimation in a turbulent environment lies in the relationship between source proximity and the temporal variance of the local gas concentration - the farther the source, the more intermittent are gas encounters. However, exploiting this feature requires measurement of changes in gas concentration on a comparably fast time scale, that have up to now only been achieved using photo-ionisation detectors. Here, we demonstrate that by appropriate signal processing, off-the-shelf metal-oxide sensors are capable of extracting rapidly fluctuating features of gas plumes that strongly correlate with source distance. We show that with a straightforward analysis method it is possible to decode events of large, consistent changes in the measured signal, so-called 'bouts'. The frequency of these bouts predicts the distance of a gas source in wind-tunnel experiments with good accuracy. In addition, we found that the variance of bout counts indicates cross-wind offset to the centreline of the gas plume. Our results offer an alternative approach to estimating gas source proximity that is largely independent of gas concentration, using off-the-shelf metal-oxide sensors. The analysis method we employ demands very few computational resources and is suitable for low-power microcontrollers.
Original languageEnglish
Pages (from-to)636-646
Number of pages11
JournalSensors and Actuators B: Chemical
Volume235
DOIs
Publication statusPublished - 1 Nov 2016

Keywords

  • Gas plumes
  • Metal-oxide sensors
  • Signal processing
  • Source proximity estimation
  • Turbulence

Fingerprint

Dive into the research topics of 'Exploiting plume structure to decode gas source distance using metal-oxide gas sensors'. Together they form a unique fingerprint.

Cite this