TY - JOUR
T1 - Gaia23bab: a new EXor
AU - Giannini, T.
AU - Schisano, E.
AU - Nisini, B.
AU - Abraham, P.
AU - Antoniucci, S.
AU - Biazzo, K.
AU - Miera, F. Cruz-Saenz de
AU - Fiorellino, E.
AU - Gangi, M.
AU - Kospal, A.
AU - Kuhn, M.
AU - Marini, E.
AU - Nagy, Z.
AU - Paris, D.
N1 - © 2024 The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/
PY - 2024/5/16
Y1 - 2024/5/16
N2 - On March 6 2023, the Gaia telescope has alerted a 2-magnitude burst from Gaia23bab, a Young Stellar Object in the Galactic plane. We observed Gaia23bab with the Large Binocular Telescope obtaining optical and near-infrared spectra close in time to the peak of the burst, and collected all public multi-band photometry to reconstruct the historical light curve. This latter shows three bursts in ten years (2013, 2017 and 2023), whose duration and amplitude are typical of EXor variables. We estimate that, due to the bursts, the mass accumulated on the star is about twice greater than if the source had remained quiescent for the same period of time. Photometric analysis indicates that Gaia23bab is a Class,II source with age < 1 Myr, spectral type G3-K0, stellar luminosity 4.0 L_sun, and mass 1.6 M_sun. The optical/near infrared spectrum is rich in emission lines. From the analysis of these lines we measured the accretion luminosity and the mass accretion rate L_acc(burst)=3.7 L_sun, M_acc(burst) 2.0 10 $^(-7) M_sun/yr, consistent with those of EXors. More generally, we derive the relationships between accretion and stellar parameters in a sample of EXors. We find that, when in burst, the accretion parameters become almost independent of the stellar parameters and that EXors, even in quiescence, are more efficient than classical T Tauri stars in assembling mass.
AB - On March 6 2023, the Gaia telescope has alerted a 2-magnitude burst from Gaia23bab, a Young Stellar Object in the Galactic plane. We observed Gaia23bab with the Large Binocular Telescope obtaining optical and near-infrared spectra close in time to the peak of the burst, and collected all public multi-band photometry to reconstruct the historical light curve. This latter shows three bursts in ten years (2013, 2017 and 2023), whose duration and amplitude are typical of EXor variables. We estimate that, due to the bursts, the mass accumulated on the star is about twice greater than if the source had remained quiescent for the same period of time. Photometric analysis indicates that Gaia23bab is a Class,II source with age < 1 Myr, spectral type G3-K0, stellar luminosity 4.0 L_sun, and mass 1.6 M_sun. The optical/near infrared spectrum is rich in emission lines. From the analysis of these lines we measured the accretion luminosity and the mass accretion rate L_acc(burst)=3.7 L_sun, M_acc(burst) 2.0 10 $^(-7) M_sun/yr, consistent with those of EXors. More generally, we derive the relationships between accretion and stellar parameters in a sample of EXors. We find that, when in burst, the accretion parameters become almost independent of the stellar parameters and that EXors, even in quiescence, are more efficient than classical T Tauri stars in assembling mass.
KW - astro-ph.SR
U2 - 10.3847/1538-4357/ad39e2
DO - 10.3847/1538-4357/ad39e2
M3 - Article
SN - 0004-637X
VL - 967
SP - 1
EP - 12
JO - The Astrophysical Journal
JF - The Astrophysical Journal
IS - 1
M1 - 41
ER -