TY - JOUR
T1 - Galactic Population Synthesis of Radioactive Nucleosynthesis Ejecta
AU - Siegert, Thomas
AU - Pleintinger, Moritz M. M.
AU - Diehl, Roland
AU - Krause, Martin G. H.
AU - Greiner, Jochen
AU - Weinberger, Christoph
N1 - © The Authors 2023. This is an Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0).
PY - 2023/3/30
Y1 - 2023/3/30
N2 - Diffuse gamma-ray line emission traces freshly produced radioisotopes in the interstellar gas, providing a unique perspective on the entire Galactic cycle of matter from nucleosynthesis in massive stars to their ejection and mixing in the interstellar medium. We aim at constructing a model of nucleosynthesis ejecta on galactic scale which is specifically tailored to complement the physically most important and empirically accessible features of gamma-ray measurements in the MeV range, in particular for decay gamma-rays such as $^{26}$Al, $^{60}$Fe or $^{44}$Ti. Based on properties of massive star groups, we developed a Population Synthesis Code which can instantiate galaxy models quickly and based on many different parameter configurations, such as the star formation rate, density profiles, or stellar evolution models. As a result, we obtain model maps of nucleosynthesis ejecta in the Galaxy which incorporate the population synthesis calculations of individual massive star groups. Based on a variety of stellar evolution models, supernova explodabilities, and density distributions, we find that the measured $^{26}$Al distribution from INTEGRAL/SPI can be explained by a Galaxy-wide population synthesis model with a star formation rate of $4$-$8\,\mathrm{M_{\odot}\,yr^{-1}}$ and a spiral-arm dominated density profile with a scale height of at least 700 pc. Our model requires that most massive stars indeed undergo a supernova explosion. This corresponds to a supernova rate in the Milky Way of $1.8$-$2.8$ per century, with quasi-persistent $^{26}$Al and $^{60}$Fe masses of $1.2$-$2.4\,\mathrm{M_{\odot}}$ and $1$-$6\,\mathrm{M_{\odot}}$, respectively. Comparing the simulated morphologies to SPI data suggests that a frequent merging of superbubbles may take place in the Galaxy, and that an unknown but strong foreground emission at 1.8 MeV could be present.
AB - Diffuse gamma-ray line emission traces freshly produced radioisotopes in the interstellar gas, providing a unique perspective on the entire Galactic cycle of matter from nucleosynthesis in massive stars to their ejection and mixing in the interstellar medium. We aim at constructing a model of nucleosynthesis ejecta on galactic scale which is specifically tailored to complement the physically most important and empirically accessible features of gamma-ray measurements in the MeV range, in particular for decay gamma-rays such as $^{26}$Al, $^{60}$Fe or $^{44}$Ti. Based on properties of massive star groups, we developed a Population Synthesis Code which can instantiate galaxy models quickly and based on many different parameter configurations, such as the star formation rate, density profiles, or stellar evolution models. As a result, we obtain model maps of nucleosynthesis ejecta in the Galaxy which incorporate the population synthesis calculations of individual massive star groups. Based on a variety of stellar evolution models, supernova explodabilities, and density distributions, we find that the measured $^{26}$Al distribution from INTEGRAL/SPI can be explained by a Galaxy-wide population synthesis model with a star formation rate of $4$-$8\,\mathrm{M_{\odot}\,yr^{-1}}$ and a spiral-arm dominated density profile with a scale height of at least 700 pc. Our model requires that most massive stars indeed undergo a supernova explosion. This corresponds to a supernova rate in the Milky Way of $1.8$-$2.8$ per century, with quasi-persistent $^{26}$Al and $^{60}$Fe masses of $1.2$-$2.4\,\mathrm{M_{\odot}}$ and $1$-$6\,\mathrm{M_{\odot}}$, respectively. Comparing the simulated morphologies to SPI data suggests that a frequent merging of superbubbles may take place in the Galaxy, and that an unknown but strong foreground emission at 1.8 MeV could be present.
KW - astro-ph.GA
KW - astro-ph.HE
U2 - 10.1051/0004-6361/202244457
DO - 10.1051/0004-6361/202244457
M3 - Article
SN - 0004-6361
VL - 672
JO - Astronomy & Astrophysics
JF - Astronomy & Astrophysics
ER -