TY - JOUR
T1 - Gear condition monitoring by a new application of the Kolmogorov—Smirnov test
AU - Andrade, F.A.
AU - Esat, I.
AU - Badi, M.
N1 - Original article can be found at: http://www.metapress.com/ Copyright Professional Engineering Publishing / MetaPress. DOI: 10.1243/0954406011524027 [Full text of this article is not available in the UHRA]
PY - 2001
Y1 - 2001
N2 - This paper introduces a new technique for the vibration condition monitoring of a set of spur gears. This technique, the Kolmogorov—Smirnov (KS) test, is based on a statistical comparison of two vibration signatures, which tests the 'null hypotheses that the cumulative density function (CDF) of a target distribution is statistically similar to the CDF of a reference distribution'. In practice, the KS test is a time-domain signal processing technique that compares two signals and returns the likelihood that the two signals are statistically similar (i.e. have the same probability distribution function). Consequently, by comparing a given vibration signature with a number of template signatures for known gear conditions, it is possible to state which is the most likely condition of the gear under analysis. It must be emphasized that this is not a moment technique as it uses the whole CDF instead of sections of the CDF. In this work, the KS test is applied to the specific problem of direct spur gear condition monitoring. It is shown that this test not only successfully identifies the condition of the gear under analysis (brand new, normal, faulty and worn out), but also gives an indication of the advancement of the crack. Furthermore, this technique identifies cracks that are not identified by popular methods based on the statistical moment and/or time-frequency (TF) analysis and the vibration signature. This shows that, despite its simplicity, the KS test is an extremely powerful method that effectively classifies different vibration signatures, allowing for its safe use as another condition monitoring technique.
AB - This paper introduces a new technique for the vibration condition monitoring of a set of spur gears. This technique, the Kolmogorov—Smirnov (KS) test, is based on a statistical comparison of two vibration signatures, which tests the 'null hypotheses that the cumulative density function (CDF) of a target distribution is statistically similar to the CDF of a reference distribution'. In practice, the KS test is a time-domain signal processing technique that compares two signals and returns the likelihood that the two signals are statistically similar (i.e. have the same probability distribution function). Consequently, by comparing a given vibration signature with a number of template signatures for known gear conditions, it is possible to state which is the most likely condition of the gear under analysis. It must be emphasized that this is not a moment technique as it uses the whole CDF instead of sections of the CDF. In this work, the KS test is applied to the specific problem of direct spur gear condition monitoring. It is shown that this test not only successfully identifies the condition of the gear under analysis (brand new, normal, faulty and worn out), but also gives an indication of the advancement of the crack. Furthermore, this technique identifies cracks that are not identified by popular methods based on the statistical moment and/or time-frequency (TF) analysis and the vibration signature. This shows that, despite its simplicity, the KS test is an extremely powerful method that effectively classifies different vibration signatures, allowing for its safe use as another condition monitoring technique.
U2 - 10.1243/0954406011524027
DO - 10.1243/0954406011524027
M3 - Article
SN - 0954-4062
VL - 215
SP - 653
EP - 661
JO - Procs of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
JF - Procs of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
IS - 6
ER -