TY - JOUR
T1 - Glass Fiber/Polypropylene composites with Potential of Bone Fracture Fixation Plates: Manufacturing Process and Mechanical Characterization
AU - Kabiri, Ali
AU - Liaghat, Gholamhossein
AU - Alavi, Fatemeh
AU - Saidpour, Hossein
AU - Hedayati, Seyyed Kaveh
AU - Ansari, Mehdi
AU - Chizari, Mahmoud
N1 - © The Author(s) 2020. The final, definitive version of this paper has been published in Journal of Composite Materials by Sage Publications Ltd. All rights reserved. It is available at: https://doi.org/10.1177/0021998320940367.
PY - 2020/7/8
Y1 - 2020/7/8
N2 - Mechanical properties and manufacturing processes of Glass Fiber/Polypropylene (GF/PP) composites for application of flexible internal long bone fracture fixation plates have been investigated. PP/Short Chopped Glass Fiber (PPSCGF), PP/Long Glass Fiber (PPLGF) and PP/Long Glass Fiber Yarn (PPLGFY) were used in fabrication of the fixation plates. The PPSCGF and PPLGF plates were made by the heat-compressing process and Three-dimensional (3D) printing method was used to make the PPLGFY ones. The values of Young’s modulus, tensile strength, flexural modulus and strength, and impact strength of the PPSCGF in the fiber longitudinal direction were found to be 2.35 ± 0.15 GPa, 30 ± 5 MPa, 2.1 ± 0.2 GPa, 27 ± 5 MPa and 22 ± 5 kJ/m2, respectively. Where, these values for the PPLGF were to 20.10 ± 2 GPa, 400 ± 30 MPa, 16.2 ± 0.2 GPa, 185 ± 5 MPa, and 162 ± 5 kJ/m2 and for the PPLGFY were to 7.87 ± 0.5 GPa, 150 ± 20 MPa, 2.3 ± 0.2 GPa, 44 ± 5 MPa and 68 ± 5 kJ/m2. These have been found to be in close agreement with the human bone properties. Furthermore, the strength and modulus values of the plates were reasonable to be used as a bone implant applicable for bone fracture reconstructions. Hence, the study concluded that the GF/PP composites are useful for load-bearing during daily activities and would be recommended as a choice in orthopedic fixation plate applications. It will help the researchers for development of new fixation designs and the clinicians for better patient’s therapy in future.
AB - Mechanical properties and manufacturing processes of Glass Fiber/Polypropylene (GF/PP) composites for application of flexible internal long bone fracture fixation plates have been investigated. PP/Short Chopped Glass Fiber (PPSCGF), PP/Long Glass Fiber (PPLGF) and PP/Long Glass Fiber Yarn (PPLGFY) were used in fabrication of the fixation plates. The PPSCGF and PPLGF plates were made by the heat-compressing process and Three-dimensional (3D) printing method was used to make the PPLGFY ones. The values of Young’s modulus, tensile strength, flexural modulus and strength, and impact strength of the PPSCGF in the fiber longitudinal direction were found to be 2.35 ± 0.15 GPa, 30 ± 5 MPa, 2.1 ± 0.2 GPa, 27 ± 5 MPa and 22 ± 5 kJ/m2, respectively. Where, these values for the PPLGF were to 20.10 ± 2 GPa, 400 ± 30 MPa, 16.2 ± 0.2 GPa, 185 ± 5 MPa, and 162 ± 5 kJ/m2 and for the PPLGFY were to 7.87 ± 0.5 GPa, 150 ± 20 MPa, 2.3 ± 0.2 GPa, 44 ± 5 MPa and 68 ± 5 kJ/m2. These have been found to be in close agreement with the human bone properties. Furthermore, the strength and modulus values of the plates were reasonable to be used as a bone implant applicable for bone fracture reconstructions. Hence, the study concluded that the GF/PP composites are useful for load-bearing during daily activities and would be recommended as a choice in orthopedic fixation plate applications. It will help the researchers for development of new fixation designs and the clinicians for better patient’s therapy in future.
KW - Mechanical properties
KW - manufacturing process
KW - microscopic investigations
KW - fixation plate
KW - GF/PP composite
UR - http://www.scopus.com/inward/record.url?scp=85087698888&partnerID=8YFLogxK
U2 - 10.1177/0021998320940367
DO - 10.1177/0021998320940367
M3 - Article
SN - 0021-9983
JO - Journal of Composite Materials
JF - Journal of Composite Materials
ER -