TY - JOUR
T1 - Grasps recognition and evaluation of stroke patients for supporting rehabilitation therapy
AU - Leon, Beatriz
AU - Basteris, Angelo
AU - Infarinato, Francesco
AU - Sale, Patrizio
AU - Nijenhuis, Sharon
AU - Prange, Gerdienke
AU - Amirabdollahian, Farshid
N1 - Copyright © 2014 Beatriz Leon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
PY - 2014/9/2
Y1 - 2014/9/2
N2 - Stroke survivors often suffer impairments on their wrist and hand. Robot-mediated rehabilitation techniques have been proposed as a way to enhance conventional therapy, based on intensive repeated movements. Amongst the set of activities of daily living, grasping is one of the most recurrent. Our aim is to incorporate the detection of grasps in the machine-mediated rehabilitation framework so that they can be incorporated into interactive therapeutic games. In this study, we developed and tested a method based on support vector machines for recognizing various grasp postures wearing a passive exoskeleton for hand and wrist rehabilitation after stroke. The experiment was conducted with ten healthy subjects and eight stroke patients performing the grasping gestures. The method was tested in terms of accuracy and robustness with respect to intersubjects' variability and differences between different grasps. Our results show reliable recognition while also indicating that the recognition accuracy can be used to assess the patients' ability to consistently repeat the gestures. Additionally, a grasp quality measure was proposed to measure the capabilities of the stroke patients to perform grasp postures in a similar way than healthy people. These two measures can be potentially used as complementary measures to other upper limb motion tests.
AB - Stroke survivors often suffer impairments on their wrist and hand. Robot-mediated rehabilitation techniques have been proposed as a way to enhance conventional therapy, based on intensive repeated movements. Amongst the set of activities of daily living, grasping is one of the most recurrent. Our aim is to incorporate the detection of grasps in the machine-mediated rehabilitation framework so that they can be incorporated into interactive therapeutic games. In this study, we developed and tested a method based on support vector machines for recognizing various grasp postures wearing a passive exoskeleton for hand and wrist rehabilitation after stroke. The experiment was conducted with ten healthy subjects and eight stroke patients performing the grasping gestures. The method was tested in terms of accuracy and robustness with respect to intersubjects' variability and differences between different grasps. Our results show reliable recognition while also indicating that the recognition accuracy can be used to assess the patients' ability to consistently repeat the gestures. Additionally, a grasp quality measure was proposed to measure the capabilities of the stroke patients to perform grasp postures in a similar way than healthy people. These two measures can be potentially used as complementary measures to other upper limb motion tests.
U2 - 10.1155/2014/318016
DO - 10.1155/2014/318016
M3 - Article
AN - SCOPUS:84924794964
SN - 2314-6133
VL - 2014
JO - BioMed Research International
JF - BioMed Research International
M1 - 318016
ER -