GRB 160410a: The first chemical study of the interstellar medium of a short GRB

J. F. Agüí Fernández, C. C. Thöne, D. A. Kann, A. de Ugarte Postigo, J. Selsing, P. Schady, R. M. Yates, J. Greiner, S. R. Oates, D. Malesani, D. Xu, A. Klotz, S. Campana, A. Rossi, D. A. Perley, M. Blazek, P. D'Avanzo, A. Giunta, D. Hartmann, K. E. HeintzP. Jakobsson, C. Kirkpatrick IV C., C. Kouveliotou, A. Melandri, G. Pugliese, R. Salvaterra, R. L. C. Starling, N. R. Tanvir, S. D. Vergani, K. Wiersema

Research output: Contribution to journalArticlepeer-review

3 Downloads (Pure)


Short Gamma-Ray Bursts (SGRBs) are produced by the coalescence of compact binary systems which are remnants of massive stars. GRB 160410A is classified as a short-duration GRB with extended emission and is currently the farthest SGRB with a redshift determined from an afterglow spectrum and also one of the brightest SGRBs to date. The fast reaction to the Neil Gehrels Swift Observatory alert allowed us to obtain a spectrum of the afterglow using the X-shooter spectrograph at the Very Large Telescope (VLT). The spectrum shows several absorption features at a redshift of z=1.7177, in addition, we detect two intervening systems at z=1.581 and z=1.444. The spectrum shows ly-alpha in absorption with a column density of log N(HI)=21.2+/-0.2 cm$^{-2}$ which, together with FeII, CII, SiII, AlII and OI, allow us to perform the first study of chemical abundances in a SGRB host galaxy. We determine a metallicity of [X/H]=-2.3+/-0.2 for FeII and -2.5+/-0.2 for SiII and no dust depletion. We also find no evidence for extinction in the afterglow spectral energy distribution (SED) modeling. The environment has a low degree of ionisation and the CIV and SiIV lines are completely absent. We do not detect an underlying host galaxy down to deep limits. Additionally, we compare GRB 160410A to GRB 201221D, another high-z short GRB that shows absorption lines at z=1.045 and an underlying massive host galaxy.
Original languageEnglish
Pages (from-to)613-636
JournalMonthly Notices of the Royal Astronomical Society
Issue number1
Early online date16 Jan 2023
Publication statusE-pub ahead of print - 16 Jan 2023


  • astro-ph.HE
  • astro-ph.GA


Dive into the research topics of 'GRB 160410a: The first chemical study of the interstellar medium of a short GRB'. Together they form a unique fingerprint.

Cite this