Abstract
A one step approach to prepare hybrid nanoparticle embedded polymer fibres using pressurised gyration is presented. Two types of novel antimicrobial nanoparticles and poly (methylmethacrylate) polymer were used in this work. X-ray diffraction analysis of the nanoparticles revealed Ag, Cu and W are the main elements present in them. The concentration of the polymer solution and the nanoparticle concentration had a significant influence on the fibre diameter, pore size and morphology. Fibres with a diameter in the range of 6-20 ìm were spun using 20 wt% polymer solutions containing 0.1, 0.25 and 0.5
w% nanoparticles under 0.3 MPa working pressure and a rotational speed of 36000 rpm. Continuous, bead-free fibre morphologies were obtained for each case. The pore size in the fibres varied between 36-300 nm. Successful incorporation of the nanoparticles in polymer fibres was confirmed by energy dispersive x-ray analysis. The fibres were also gyrospun on
to metallic disks to prepare filters which were tested for their antibacterial activity on a suspension of Pseudomonas aeruginosa. Nanoparticle loaded fibres showed higher antibacterial efficacy than pure poly(methylmethacrylate) fibres.8pÍu
w% nanoparticles under 0.3 MPa working pressure and a rotational speed of 36000 rpm. Continuous, bead-free fibre morphologies were obtained for each case. The pore size in the fibres varied between 36-300 nm. Successful incorporation of the nanoparticles in polymer fibres was confirmed by energy dispersive x-ray analysis. The fibres were also gyrospun on
to metallic disks to prepare filters which were tested for their antibacterial activity on a suspension of Pseudomonas aeruginosa. Nanoparticle loaded fibres showed higher antibacterial efficacy than pure poly(methylmethacrylate) fibres.8pÍu
Original language | English |
---|---|
Article number | MSC-07193 |
Pages (from-to) | 315-324 |
Number of pages | 10 |
Journal | Materials Science and Engineering C |
Volume | 74 |
Early online date | 7 Dec 2016 |
DOIs | |
Publication status | Published - 1 May 2017 |
Keywords
- Gyration process
- antimicrobial
- filters
- polymer fibres