TY - JOUR
T1 - Heterogeneous update mechanisms in evolutionary games: mixing innovative and imitative dynamics
AU - Javarone, Marco
AU - Amaral, Marco Antonio
N1 - This article has been accepted for publication in Physical Review E, DOI:
https://doi.org/10.1103/PhysRevE.97.042305, © 2018 American Physical Society.
Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.
PY - 2018/4/5
Y1 - 2018/4/5
N2 - Innovation and evolution are two processes of paramount relevance for social and biological systems. In general, the former allows the introduction of elements of novelty, while the latter is responsible for the motion of a system in its phase space. Often, these processes are strongly related, since an innovation can trigger the evolution, and the latter can provide the optimal conditions for the emergence of innovations. Both processes can be studied by using the framework of evolutionary game theory, where evolution constitutes an intrinsic mechanism. At the same time, the concept of innovation requires an opportune mathematical representation. Notably, innovation can be modeled as a strategy, or it can constitute the underlying mechanism that allows agents to change strategy. Here, we analyze the second case, investigating the behavior of a heterogeneous population, composed of imitative and innovative agents. Imitative agents change strategy only by imitating that of their neighbors, whereas innovative ones change strategy without the need for a copying source. The proposed model is analyzed by means of analytical calculations and numerical simulations in different topologies. Remarkably, results indicate that the mixing of mechanisms can be detrimental to cooperation near phase transitions. In those regions, the spatial reciprocity from imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation. Our investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy revision methods, highlighting the role of innovation in evolutionary games.
AB - Innovation and evolution are two processes of paramount relevance for social and biological systems. In general, the former allows the introduction of elements of novelty, while the latter is responsible for the motion of a system in its phase space. Often, these processes are strongly related, since an innovation can trigger the evolution, and the latter can provide the optimal conditions for the emergence of innovations. Both processes can be studied by using the framework of evolutionary game theory, where evolution constitutes an intrinsic mechanism. At the same time, the concept of innovation requires an opportune mathematical representation. Notably, innovation can be modeled as a strategy, or it can constitute the underlying mechanism that allows agents to change strategy. Here, we analyze the second case, investigating the behavior of a heterogeneous population, composed of imitative and innovative agents. Imitative agents change strategy only by imitating that of their neighbors, whereas innovative ones change strategy without the need for a copying source. The proposed model is analyzed by means of analytical calculations and numerical simulations in different topologies. Remarkably, results indicate that the mixing of mechanisms can be detrimental to cooperation near phase transitions. In those regions, the spatial reciprocity from imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation. Our investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy revision methods, highlighting the role of innovation in evolutionary games.
U2 - 10.1103/PhysRevE.97.042305
DO - 10.1103/PhysRevE.97.042305
M3 - Article
SN - 1539-3755
VL - 97
JO - Physical Review E
JF - Physical Review E
IS - 4
M1 - 042305
ER -