Illusions of Self‐Motion during Magnetic Resonance ‐Guided Focused Ultrasound Thalamotomy for Tremor

Matteo Ciocca, Ayesha Jameel, Nada Yousif, Neekhil Patel, Joely Smith, Sena Akgun, Brynmor Jones, Wlayslaw Gedroyc, Dipankar Nandi, Yen Tai, Barry M. Seemungal, Peter Bain

Research output: Contribution to journalArticlepeer-review

34 Downloads (Pure)

Abstract

Objective: Brain networks mediating vestibular perception of self‐motion overlap with those mediating balance. A systematic mapping of vestibular perceptual pathways in the thalamus may reveal new brain modulation targets for improving balance in neurological conditions. Methods: Here, we systematically report how magnetic resonance‐guided focused ultrasound surgery of the nucleus ventralis intermedius of the thalamus commonly evokes transient patient‐reported illusions of self‐motion. In 46 consecutive patients, we linked the descriptions of self‐motion to sonication power and 3‐dimensional (3D) coordinates of sonication targets. Target coordinates were normalized using a standard atlas, and a 3D model of the nucleus ventralis intermedius and adjacent structures was created to link sonication target to the illusion. Results: A total of 63% of patients reported illusions of self‐motion, which were more likely with increased sonication power and with targets located more inferiorly along the rostrocaudal axis. Higher power and more inferiorly targeted sonications increased the likelihood of experiencing illusions of self‐motion by 4 and 2 times, respectively (odds ratios = 4.03 for power, 2.098 for location). Interpretation: The phenomenon of magnetic vestibular stimulation is the most plausible explanation for these illusions of self‐motion. Temporary unilateral modulation of vestibular pathways (via magnetic resonance‐guided focused ultrasound) unveils the central adaptation to the magnetic field‐induced peripheral vestibular bias, leading to an explicable illusion of motion. Consequently, systematic mapping of vestibular perceptual pathways via magnetic resonance‐guided focused ultrasound may reveal new intracerebral targets for improving balance in neurological conditions. ANN NEUROL 2024
Original languageEnglish
Article number26945
Pages (from-to)1-12
Number of pages12
JournalAnnals of Neurology
Early online date6 May 2024
DOIs
Publication statusE-pub ahead of print - 6 May 2024

Fingerprint

Dive into the research topics of 'Illusions of Self‐Motion during Magnetic Resonance ‐Guided Focused Ultrasound Thalamotomy for Tremor'. Together they form a unique fingerprint.

Cite this