Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques

nTOF Collaboration

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

i-TED is an innovative detection system which exploits Compton imaging techniques to achieve a superior signal-to-background ratio in (n, γ) cross-section measurements using time-of-flight technique. This work presents the first experimental validation of the i-TED apparatus for high-resolution time-of-flight experiments and demonstrates for the first time the concept proposed for background rejection. To this aim, the 197Au(n, γ) and 56Fe(n, γ) reactions were studied at CERN n_TOF using an i-TED demonstrator based on three position-sensitive detectors. Two C6D6 detectors were also used to benchmark the performance of i-TED. The i-TED prototype built for this study shows a factor of ∼ 3 higher detection sensitivity than state-of-the-art C6D6 detectors in the 10 keV neutron-energy region of astrophysical interest. This paper explores also the perspectives of further enhancement in performance attainable with the final i-TED array consisting of twenty position-sensitive detectors and new analysis methodologies based on Machine-Learning techniques.

Original languageEnglish
Article number197
JournalThe European Physical Journal A (EPJ A)
Volume57
Issue number6
DOIs
Publication statusPublished - 17 Jun 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques'. Together they form a unique fingerprint.

Cite this