Impact of wild-type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea

D.C. Naseby, J.M. Lynch

    Research output: Contribution to journalArticlepeer-review

    58 Citations (Scopus)
    54 Downloads (Pure)

    Abstract

    The aim of this work was to determine the impact of wild type along with functionally and non-functionally modified Pseudomonas fluorescens strains in the rhizosphere. The wild type F113 strain carried a gene encoding the production of the antibiotic 2,4 diacetylphloroglucinol (DAPG) useful in plant disease control, and was marked with a lacZY gene cassette. The first modified strain was a functional modification of strain F113 with repressed production of DAPG, creating the DAPG negative strain F113 G22. The second paired comparison was a non-functional modification of wild type (unmarked) strain SBW25, constructed to carry marker genes only, creating strain SBW25 EeZY-6KX. Significant perturbations were found in the indigenous bacterial population structure, with the F113, (DAPG+) strain causing a shift towards slower growing colonies (K strategists) compared with the non-antibiotic producing derivative (F113 G22) and the SBW25 strains. The DAPG+ strain also significantly reduced, in comparison with the other inocula, the total Pseudomonas populations but did not affect the total microbial populations. The survival of F113 and F113 G22 were an order of magnitude lower than the SBW 25 strains. The DAPG+ strain caused a significant decrease in the shoot to root ratio in comparison to the control and other inoculants, indicating plant stress. F113 increased soil alkaline phosphatase, phosphodiesterase and aryl sulphatase activities compared to the other inocula, which themselves reduced the same enzyme activities compared to the control. In contrast to this, the -glucosidase, -galactosidase and N-acetyl glucosaminidase activities decreased with the inoculation of the DAPG+ strain. These results indicate that soil enzymes are sensitive to the impact of GMM inoculation.
    Original languageEnglish
    Pages (from-to)617-625
    JournalMolecular Ecology
    Volume7
    Issue number5
    DOIs
    Publication statusPublished - 1998

    Fingerprint

    Dive into the research topics of 'Impact of wild-type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea'. Together they form a unique fingerprint.

    Cite this