Imposed Switching Frequency Direct Torque Control of Induction Machine Using Five Level Flying Capacitors Inverter

Abderrahmane Berkani, Karim Negadi, Tayeb Allaoui, Abdelkader Mezouar, Mouloud Denai

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
25 Downloads (Pure)

Abstract

The paper proposes a new control structure for sensorless induction motor drive based on a five-level voltage source inverter (VSI). The output voltages of the five-level VSI can be represented by nine groups. Then, the amplitude and the rotating velocity of the flux vector can be controlled freely. Both fast torque and optimal switching logic can be obtained. The selection is based on the value of the stator flux and the torque. This paper investigates a new control structure focused on controlling switching frequency and torque harmonics contents.
These strategies, called ISFDTC, indeed combines harmoniously both these factors, without compromising the excellence of the dynamical performances typically conferred to standard DTC strategies. The validity of the proposed control technique is verified by Matlab/Simulink.
Simulation results presented in this paper confirm the validity and feasibility of the proposed control approach and can be tested on experimental setup.
Original languageEnglish
Pages (from-to)241-248
Number of pages8
JournalEuropean Journal of Electrical Engineering (EJEE)
Volume21
Issue number2
DOIs
Publication statusPublished - 30 Jun 2019

Keywords

  • DTC, control of switching frequency, induction motor, multi-level inverter and flying capacitors inverter.
  • Induction motor
  • DTC
  • Multi-level inverter and flying capacitors inverter
  • Control of switching frequency

Fingerprint

Dive into the research topics of 'Imposed Switching Frequency Direct Torque Control of Induction Machine Using Five Level Flying Capacitors Inverter'. Together they form a unique fingerprint.

Cite this