TY - JOUR
T1 - In Silico and In Vitro Mapping of Receptor-Type Protein Tyrosine Phosphatase Receptor Type D in Health and Disease: Implications for Asprosin Signalling in Endometrial Cancer and Neuroblastoma
AU - Orton, Sophie
AU - Karkia, Rebecca
AU - Mustafov, Denis
AU - Gharanei, Seley
AU - Braoudaki, Maria
AU - Filipe, Alice
AU - Panfilov, Suzana
AU - Saravi, Sayeh
AU - Khan, Nabeel
AU - Kyrou, Ioannis
AU - Karteris, Emmanouil
AU - Chatterjee, Jayanta
AU - Randeva, Harpal S.
N1 - ©2024 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/
PY - 2024/1/30
Y1 - 2024/1/30
N2 - Background: Protein Tyrosine Phosphatase Receptor Type D (PTPRD) is involved in the regulation of cell growth, differentiation, and oncogenic transformation, as well as in brain development. PTPRD also mediates the effects of asprosin, which is a glucogenic hormone/adipokine derived following the cleavage of the C-terminal of fibrillin 1. Since the asprosin circulating levels are elevated in certain cancers, research is now focused on the potential role of this adipokine and its receptors in cancer. As such, in this study, we investigated the expression of PTPRD in endometrial cancer (EC) and the placenta, as well as in glioblastoma (GBM). Methods: An array of in silico tools, in vitro models, tissue microarrays (TMAs), and liquid biopsies were employed to determine the gene and protein expression of PTPRD in healthy tissues/organs and in patients with EC and GBM. Results: PTPRD exhibits high expression in the occipital lobe, parietal lobe, globus pallidus, ventral thalamus, and white matter, whereas in the human placenta, it is primarily localised around the tertiary villi. PTPRD is significantly upregulated at the mRNA and protein levels in patients with EC and GBM compared to healthy controls. In patients with EC, PTPRD is significantly downregulated with obesity, whilst it is also expressed in the peripheral leukocytes. The EC TMAs revealed abundant PTPRD expression in both low- and high-grade tumours. Asprosin treatment upregulated the expression of PTPRD only in syncytialised placental cells. Conclusions: Our data indicate that PTPRD may have potential as a biomarker for malignancies such as EC and GBM, further implicating asprosin as a potential metabolic regulator in these cancers. Future studies are needed to explore the potential molecular mechanisms/signalling pathways that link PTPRD and asprosin in cancer.
AB - Background: Protein Tyrosine Phosphatase Receptor Type D (PTPRD) is involved in the regulation of cell growth, differentiation, and oncogenic transformation, as well as in brain development. PTPRD also mediates the effects of asprosin, which is a glucogenic hormone/adipokine derived following the cleavage of the C-terminal of fibrillin 1. Since the asprosin circulating levels are elevated in certain cancers, research is now focused on the potential role of this adipokine and its receptors in cancer. As such, in this study, we investigated the expression of PTPRD in endometrial cancer (EC) and the placenta, as well as in glioblastoma (GBM). Methods: An array of in silico tools, in vitro models, tissue microarrays (TMAs), and liquid biopsies were employed to determine the gene and protein expression of PTPRD in healthy tissues/organs and in patients with EC and GBM. Results: PTPRD exhibits high expression in the occipital lobe, parietal lobe, globus pallidus, ventral thalamus, and white matter, whereas in the human placenta, it is primarily localised around the tertiary villi. PTPRD is significantly upregulated at the mRNA and protein levels in patients with EC and GBM compared to healthy controls. In patients with EC, PTPRD is significantly downregulated with obesity, whilst it is also expressed in the peripheral leukocytes. The EC TMAs revealed abundant PTPRD expression in both low- and high-grade tumours. Asprosin treatment upregulated the expression of PTPRD only in syncytialised placental cells. Conclusions: Our data indicate that PTPRD may have potential as a biomarker for malignancies such as EC and GBM, further implicating asprosin as a potential metabolic regulator in these cancers. Future studies are needed to explore the potential molecular mechanisms/signalling pathways that link PTPRD and asprosin in cancer.
KW - PTPRD
KW - glioblastoma
KW - protein tyrosine phosphatase receptor type D
KW - asprosin
KW - endometrial cancer
KW - placenta
UR - http://www.scopus.com/inward/record.url?scp=85184705830&partnerID=8YFLogxK
U2 - 10.3390/cancers16030582
DO - 10.3390/cancers16030582
M3 - Article
C2 - 38339334
SN - 2072-6694
VL - 16
SP - 1
EP - 19
JO - Cancers
JF - Cancers
IS - 3
M1 - 582
ER -