In vitro toxicity of nanosized copper particles in PC12 cells induced by oxidative stress

Pengjuan Xu, Jing Xu, Shichang Liu, Guogang Ren, Zhuo Yang

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


Recent evidence suggests that some nanomaterials, which are widely used in many fields, have health effects. In order to investigate the cytotoxicity induced by nanosized copper particles (nano-Cu), PC12 cells, which were widely used as an in vitro model for the neuron research, were treated with different concentrations (0, 1, 10, 30, and 100 mu g/mL) of nano-Cu. The cell viability was determined by measurement of the reduction product of 3-(4,5-dimethyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT). The oxidative stress induced by nano-Cu and its possible mechanism were studied in relation to the generation of reactive oxygen species (ROS) and the cellular activity of superoxide dismutase (SOD). Results showed that incubation of PC12 cells with increasing concentrations of nano-Cu induced a decrease of cell viability in a concentration-and time-dependent manner. In addition, flow cytometry assay using Annexin V-FITC/PI staining was used to investigate the mode of nano-Cu-induced cell death and quantified the percentage of apoptotic cells. Results showed that nano-Cu induced the significant apoptosis in PC12 cells. Meanwhile, intracellular accumulation of ROS was increased with the increased concentrations of nano-Cu and it was associated with decreased SOD activity, which was probably due to protect effects against the oxidative stress in PC12 cells. Results suggested that both excessive intracellular ROS and decreased SOD contributed to nano-Cu-induced cytotoxicity. In other words, the increasing of oxidative stress was a key mechanism in PC12 apoptosis induced by nano-Cu.

Original languageEnglish
Article number906
Number of pages9
JournalJournal of Nanoparticle Research
Issue number6
Publication statusPublished - Jun 2012


Dive into the research topics of 'In vitro toxicity of nanosized copper particles in PC12 cells induced by oxidative stress'. Together they form a unique fingerprint.

Cite this