Abstract
Ternary chloride salts containing alkaline earth metal salts are potential hightemperature
thermal energy storage (TES) media for future applications. However, the effect of alkaline earth metal salts on the corrosion of 316 stainless steel (SS) is still not well understood. In this paper, the short-term corrosion behavior of two ternary chloride salts, LiCl–KCl–CaCl₂, with different CaCl₂ contents on 316 SS at 650 ºC was studied through a combination of experiments and first-principles molecular dynamics simulations. The effect of impurity water introduced by CaCl₂ on the formation and evolution of corrosion products was revealed by experimental methods. The dynamic interaction between impurity water introduced by the chloride salts and the salt mixture LiCl–KCl–CaCl₂ with different components was studied by molecular dynamics simulations. The experimental and simulation results show that the impurity water introduced by CaCl₂ promotes the corrosion of 316 SS. These findings provide new insights for molten salt design and corrosion control of high-temperature TES for concentrated solar power.
thermal energy storage (TES) media for future applications. However, the effect of alkaline earth metal salts on the corrosion of 316 stainless steel (SS) is still not well understood. In this paper, the short-term corrosion behavior of two ternary chloride salts, LiCl–KCl–CaCl₂, with different CaCl₂ contents on 316 SS at 650 ºC was studied through a combination of experiments and first-principles molecular dynamics simulations. The effect of impurity water introduced by CaCl₂ on the formation and evolution of corrosion products was revealed by experimental methods. The dynamic interaction between impurity water introduced by the chloride salts and the salt mixture LiCl–KCl–CaCl₂ with different components was studied by molecular dynamics simulations. The experimental and simulation results show that the impurity water introduced by CaCl₂ promotes the corrosion of 316 SS. These findings provide new insights for molten salt design and corrosion control of high-temperature TES for concentrated solar power.
Original language | English |
---|---|
Article number | 113034 |
Number of pages | 15 |
Journal | Journal of Energy Storage |
Volume | 98 |
Issue number | Part A |
Early online date | 27 Jul 2024 |
DOIs | |
Publication status | Published - 30 Sept 2024 |