Inhomogeneous Enrichment of Radioactive Nuclei in the Galaxy: Deposition of Live 53 Mn, 60 Fe, 182 Hf, and 244 Pu into Deep-sea Archives. Surfing the Wave?

Benjamin Wehmeyer, Andrés Yagüe López, Benoit Côté, Maria K. Pető, Chiaki Kobayashi, Maria Lugaro

Research output: Contribution to journalArticlepeer-review

12 Downloads (Pure)

Abstract

While modeling the galactic chemical evolution (GCE) of stable elements provides insights to the formation history of the Galaxy and the relative contributions of nucleosynthesis sites, modeling the evolution of short-lived radioisotopes (SLRs) can provide supplementary timing information on recent nucleosynthesis. To study the evolution of SLRs, we need to understand their spatial distribution. Using a three-dimensional GCE model, we investigated the evolution of four SLRs: 53Mn, 60Fe, 182Hf, and 244Pu with the aim of explaining detections of recent (within the last ≈1–20 Myr) deposition of live 53Mn, 60Fe, and 244Pu of extrasolar origin into deep-sea reservoirs. We find that core-collapse supernovae are the dominant propagation mechanism of SLRs in the Galaxy. This results in the simultaneous arrival of these four SLRs on Earth, although they could have been produced in different astrophysical sites, which can explain why live extrasolar 53Mn, 60Fe, and 244Pu are found within the same, or similar, layers of deep-sea sediments. We predict that 182Hf should also be found in such sediments at similar depths.
Original languageEnglish
Article number121
Pages (from-to)1-16
Number of pages16
JournalThe Astrophysical Journal
Volume944
Issue number2
DOIs
Publication statusPublished - 16 Feb 2023

Keywords

  • 320
  • Interstellar Matter and the Local Universe

Fingerprint

Dive into the research topics of 'Inhomogeneous Enrichment of Radioactive Nuclei in the Galaxy: Deposition of Live 53 Mn, 60 Fe, 182 Hf, and 244 Pu into Deep-sea Archives. Surfing the Wave?'. Together they form a unique fingerprint.

Cite this