Inverse-Compton emission from the lobes of 3C 353

Joanna Goodger, M.J. Hardcastle, J.H. Croston, N.E. Kassim, R.A. Perley

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)
19 Downloads (Pure)


X-ray emission due to inverse-Compton scattering of microwave background photons by electrons in the lobes of powerful radio galaxies has now been seen in a large number of objects. Combining an inverse-Compton model for the lobe X-ray emission with information obtained from radio synchrotron emission provides a method of constraining the electron population
and magnetic field energy density, which cannot be accomplished using the radio data alone. Using six frequencies of new and archival radio data and new XMM-Newton observations of the Fanaroff & Riley class II radio galaxy 3C353, we show that inverse-Compton emission is detected in the radio lobes of this source at a level consistent with what is seen in other objects. We argue that variations in the X-ray/radio ratio in the brighter eastern lobe require positionally varying magnetic field strength. We also examine the X-ray nucleus and
the cluster, Zw1819.1-0108, spatially and spectrally.
Original languageEnglish
Pages (from-to)337-347
JournalMonthly Notices of the Royal Astronomical Society
Issue number1
Publication statusPublished - 2008


Dive into the research topics of 'Inverse-Compton emission from the lobes of 3C 353'. Together they form a unique fingerprint.

Cite this