Abstract
A new hybrid fabrication technique was introduced to manufacture composite laminates made of glass fiber, carbon fiber, and acrylonitrile butadiene styrene (ABS) as the matrix. The fabrication process utilized two different techniques: fused deposition modeling and hot press molding. The composite laminates were produced using five layers of glass fibers to form glass fiber-reinforced composites (GF/ABS) and five layers of glass fiber and carbon fiber to form glass fiber, carbon fiber-reinforced hybrid composites (GF/CF/ABS), with three layers of glass fibers and two layers of carbon fibers. The fabricated composite laminates were subjected to wear testing at velocities of 2 m/s, 3 m/s, and 4 m/s and under loads of 5 N and 10 N. The results indicated that GF/ABS
samples had the lowest wear loss at 5 N and a velocity of 4 m/s. Additionally, the GF/CF/ABS hybrid samples had the lowest coefficient of friction (COF) of 0.28 at 4 m/s. The GF/ABS samples also exhibited the lowest friction force of 1.7 at 5 N and a velocity of 4 m/s. The worn samples were analyzed using a scanning electron microscope to examine the fiber-to-matrix adhesion behavior. GF/ABS and GF/CF/ABS composites are widely used in various applications due to their high strength-to-weight ratio and resistance to wear. These materials could be used in automotive parts, sporting goods and marine applications.
samples had the lowest wear loss at 5 N and a velocity of 4 m/s. Additionally, the GF/CF/ABS hybrid samples had the lowest coefficient of friction (COF) of 0.28 at 4 m/s. The GF/ABS samples also exhibited the lowest friction force of 1.7 at 5 N and a velocity of 4 m/s. The worn samples were analyzed using a scanning electron microscope to examine the fiber-to-matrix adhesion behavior. GF/ABS and GF/CF/ABS composites are widely used in various applications due to their high strength-to-weight ratio and resistance to wear. These materials could be used in automotive parts, sporting goods and marine applications.
Original language | English |
---|---|
Article number | 131 |
Pages (from-to) | 1-16 |
Number of pages | 16 |
Journal | Lubricants |
Volume | 11 |
Issue number | 3 |
Early online date | 13 Mar 2023 |
DOIs | |
Publication status | Published - 13 Mar 2023 |
Keywords
- acrylonitrile butadiene styrene
- carbon fiber
- fused deposition modeling
- glass fiber
- hot press molding
- hybrid manufacturing
- wear
- Article