TY - JOUR
T1 - Is the IMF in ellipticals bottom-heavy? Clues from their chemical abundances
AU - Masi, C. De
AU - Vincenzo, F.
AU - Matteucci, F.
AU - Rosani, G.
AU - Barbera, La
AU - Pasquali, A.
AU - Spitoni, E.
N1 - © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.
PY - 2019/2
Y1 - 2019/2
N2 - We tested the implementation of different initial mass functions (IMFs) in our model for the chemical evolution of ellipticals, with the aim of reproducing the observed relations of [Fe/H] and [Mg/Fe] abundances with galaxy mass in a sample of early-type galaxies selected from the SPIDER-SDSS catalogue. Abundances in the catalogue were derived from averaged spectra, obtained by stacking individual spectra according to central velocity dispersion, as a proxy of galaxy mass. We tested IMFs already used in a previous work, as well as two new models, based on low-mass tapered (‘bimodal’) IMFs, where the IMF becomes either (1) bottom-heavy in more massive galaxies, or (2) is time-dependent, switching from top-heavy to bottom-heavy in the course of galactic evolution. We found that observations could only be reproduced by models assuming either a constant, Salpeter IMF, or a time-dependent distribution, as other IMFs failed. We further tested the models by calculating their M/L ratios. We conclude that a constant, time-independent bottom-heavy IMF does not reproduce the data, especially the increase of the [α/Fe] ratio with galactic stellar mass, whereas a variable IMF, switching from top to bottom-heavy, can match observations. For the latter models, the IMF switch always occurs at the earliest possible considered time, i.e. tswitch = 0.1 Gyr.
AB - We tested the implementation of different initial mass functions (IMFs) in our model for the chemical evolution of ellipticals, with the aim of reproducing the observed relations of [Fe/H] and [Mg/Fe] abundances with galaxy mass in a sample of early-type galaxies selected from the SPIDER-SDSS catalogue. Abundances in the catalogue were derived from averaged spectra, obtained by stacking individual spectra according to central velocity dispersion, as a proxy of galaxy mass. We tested IMFs already used in a previous work, as well as two new models, based on low-mass tapered (‘bimodal’) IMFs, where the IMF becomes either (1) bottom-heavy in more massive galaxies, or (2) is time-dependent, switching from top-heavy to bottom-heavy in the course of galactic evolution. We found that observations could only be reproduced by models assuming either a constant, Salpeter IMF, or a time-dependent distribution, as other IMFs failed. We further tested the models by calculating their M/L ratios. We conclude that a constant, time-independent bottom-heavy IMF does not reproduce the data, especially the increase of the [α/Fe] ratio with galactic stellar mass, whereas a variable IMF, switching from top to bottom-heavy, can match observations. For the latter models, the IMF switch always occurs at the earliest possible considered time, i.e. tswitch = 0.1 Gyr.
KW - astro-ph.GA
U2 - 10.1093/mnras/sty3127
DO - 10.1093/mnras/sty3127
M3 - Article
SN - 0035-8711
VL - 483
SP - 2217
EP - 2235
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 2
M1 - sty3127
ER -