TY - JOUR
T1 - Jet Feedback in Star-Forming Galaxies
AU - Krause, Martin
N1 - © 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
PY - 2023/2/12
Y1 - 2023/2/12
N2 - In this paper, I review our understanding of how jet feedback works in star-forming galaxies. There are some interesting differences to radiative feedback from Active Galactic Nuclei (AGN). Jets act on galaxy haloes as well as on dense gas, for example in regularly rotating discs, where they can suppress star formation (particularly in the centre, negative feedback), but also enhance it (positive feedback). Jet feedback may produce turbulent, multi-phase gas structures where shocks contribute to the ionisation and is observed in connection with galactic outflows. The exact driving mechanism of these outflows is still unclear, but may be a combination of effects linked to star formation, jet-induced turbulence and radiative AGN feedback. Supermassive black holes in any galaxy can produce jets. Preferential radio detections in more massive galaxies can be explained with different conditions in the circumgalactic medium and, correspondingly, different jet–environment interactions.
AB - In this paper, I review our understanding of how jet feedback works in star-forming galaxies. There are some interesting differences to radiative feedback from Active Galactic Nuclei (AGN). Jets act on galaxy haloes as well as on dense gas, for example in regularly rotating discs, where they can suppress star formation (particularly in the centre, negative feedback), but also enhance it (positive feedback). Jet feedback may produce turbulent, multi-phase gas structures where shocks contribute to the ionisation and is observed in connection with galactic outflows. The exact driving mechanism of these outflows is still unclear, but may be a combination of effects linked to star formation, jet-induced turbulence and radiative AGN feedback. Supermassive black holes in any galaxy can produce jets. Preferential radio detections in more massive galaxies can be explained with different conditions in the circumgalactic medium and, correspondingly, different jet–environment interactions.
U2 - 10.3390/galaxies11010029
DO - 10.3390/galaxies11010029
M3 - Article
SN - 2075-4434
VL - 11
JO - Galaxies
JF - Galaxies
IS - 1
ER -