TY - JOUR
T1 - Kinetic analysis of the induction period in lipoxygenase catalysis
AU - Schilstra, M.
AU - Veldink, G.A.
AU - Vliegenthart, J.F.G.
N1 - Original article can be found at: http://pubs.acs.org/journals/bichaw/index.html Copyright American Chemical Society DOI: 10.1021/bi00081a012 [Full text of this article is not available in the UHRA]
PY - 1993
Y1 - 1993
N2 - The dioxygenation of 50 pM linoleate at 0.1 pM (13s)-hydroperoxylinoleate, 240 pM 02, pH 10, and 25 O C , catalyzed by varying amounts of soybean lipoxygenase-1, was studied with rapid kinetic techniques. The aim was to assess the effect of transient redistributions of the Fe(I1) and Fe(II1) enzyme forms on the shape of the reaction progress curves. Reactions initiated with iron(I1) lipoxygenase show an initial increase in rate, the “kinetic lag phase” or “induction period”. The duration of this induction period varies from approximately 1 s at [lipoxygenase] > 20 nM to 5 s at [lipoxygenase] = 3 nM. At [lipoxygenase] < 2 nM, the duration of the induction period in these curves is inversely proportional to [lipoxygenase]. The integrated steady-state rate equation for the single fatty acid binding site model of lipoxygenase catalysis [Schilstra et al. (1992) Biochemistry 31,7692-76991 also shows an induction period whose duration is inversely proportional to [lipoxygenase]. These observations, in combination with nonsteady- state numerical simulations, lead to the conclusion that, at [lipoxygenase] < 2 nM, pre-steady-state redistributions of enzyme intermediates occur fast with respect to the rate at which the concentrations of substrates and products change. At higher lipoxygenase concentrations, the pre-steady-state redistributions contribute significantly to the induction period. From a nonlinear least-squares fit to the steady-state rate equation of data obtained at lipoxygenase concentrations of 0.5 and 1 nM, it was calculated that 1% of the linoleate radicals that are formed after hydrogen abstraction dissociate from the active site before enzymic oxygen insertion has occurred.
AB - The dioxygenation of 50 pM linoleate at 0.1 pM (13s)-hydroperoxylinoleate, 240 pM 02, pH 10, and 25 O C , catalyzed by varying amounts of soybean lipoxygenase-1, was studied with rapid kinetic techniques. The aim was to assess the effect of transient redistributions of the Fe(I1) and Fe(II1) enzyme forms on the shape of the reaction progress curves. Reactions initiated with iron(I1) lipoxygenase show an initial increase in rate, the “kinetic lag phase” or “induction period”. The duration of this induction period varies from approximately 1 s at [lipoxygenase] > 20 nM to 5 s at [lipoxygenase] = 3 nM. At [lipoxygenase] < 2 nM, the duration of the induction period in these curves is inversely proportional to [lipoxygenase]. The integrated steady-state rate equation for the single fatty acid binding site model of lipoxygenase catalysis [Schilstra et al. (1992) Biochemistry 31,7692-76991 also shows an induction period whose duration is inversely proportional to [lipoxygenase]. These observations, in combination with nonsteady- state numerical simulations, lead to the conclusion that, at [lipoxygenase] < 2 nM, pre-steady-state redistributions of enzyme intermediates occur fast with respect to the rate at which the concentrations of substrates and products change. At higher lipoxygenase concentrations, the pre-steady-state redistributions contribute significantly to the induction period. From a nonlinear least-squares fit to the steady-state rate equation of data obtained at lipoxygenase concentrations of 0.5 and 1 nM, it was calculated that 1% of the linoleate radicals that are formed after hydrogen abstraction dissociate from the active site before enzymic oxygen insertion has occurred.
U2 - 10.1021/bi00081a012
DO - 10.1021/bi00081a012
M3 - Article
SN - 0006-2960
VL - 32
SP - 7686
EP - 7691
JO - Biochemistry
JF - Biochemistry
IS - 30
ER -