TY - JOUR
T1 - Losses Calculation of an Aerospace Retraction Wheel Motor with Regarding to Electromagnetic-Field Analysis Investigation
AU - Asef, Pedram
AU - Ramon Bargallo
N1 - This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/).
PY - 2016/3/31
Y1 - 2016/3/31
N2 - A 3-D FEA (finite element analysis) transient and steady-state design proposal for high-speed with Nd-Fe-Br (reversible) magnets in aerospace application will be examined under design considerations of n = 12,000 rpm, short-duty, sinusoidal drive, low cogging, high efficiency at peak torque, and etc. for an ARWM (aerospace retraction wheel motor). In construction, the PMs (permanent magnets) fixed on the rotor core which is surface-mounted magnets retained by a carbon-fiber bandage. Redundant windings, resistant to fault propagation have accounted. Besides, an axial water-jacket housing without end-cap cooling has involved. All performed characteristic performances of the correlated ARWM will verify by comparison through 2-D and 3-D FEA results. In this paper, design process has dealing with determination of various kinds of losses such as electromagnetic and mechanical losses. In terms of both classified losses, copper, stator back iron, stator tooth, PM, rotor back iron, air-friction and sleeve losses were calculated. The 3-D end-winding effects were included in the modeled ARWM by the authors.
AB - A 3-D FEA (finite element analysis) transient and steady-state design proposal for high-speed with Nd-Fe-Br (reversible) magnets in aerospace application will be examined under design considerations of n = 12,000 rpm, short-duty, sinusoidal drive, low cogging, high efficiency at peak torque, and etc. for an ARWM (aerospace retraction wheel motor). In construction, the PMs (permanent magnets) fixed on the rotor core which is surface-mounted magnets retained by a carbon-fiber bandage. Redundant windings, resistant to fault propagation have accounted. Besides, an axial water-jacket housing without end-cap cooling has involved. All performed characteristic performances of the correlated ARWM will verify by comparison through 2-D and 3-D FEA results. In this paper, design process has dealing with determination of various kinds of losses such as electromagnetic and mechanical losses. In terms of both classified losses, copper, stator back iron, stator tooth, PM, rotor back iron, air-friction and sleeve losses were calculated. The 3-D end-winding effects were included in the modeled ARWM by the authors.
U2 - 10.17265/1934-8975/2016.03.006
DO - 10.17265/1934-8975/2016.03.006
M3 - Article
SN - 1934-8975
VL - 10
SP - 183
EP - 190
JO - Journal of Energy and Power Engineering
JF - Journal of Energy and Power Engineering
ER -