TY - JOUR
T1 - Magic square from yang-mills squared
AU - Borsten, L.
AU - Duff, M. J.
AU - Hughes, L. J.
AU - Nagy, S.
PY - 2014/4/4
Y1 - 2014/4/4
N2 - We give a unified description of D=3 super-Yang-Mills theory with N=1, 2, 4, and 8 supersymmeties in terms of the four division algebras: reals (R), complexes (C), quaternions (H) and octonions (O). Tensoring left and right super-Yang-Mills multiplets with N=1, 2, 4, 8 we obtain a magic square RR, CR, CC, HR, HC, HH, OR, OC, OH, OO description of D=3 supergravity with N=2, 3, 4, 5, 6, 8, 9, 10, 12, 16.
AB - We give a unified description of D=3 super-Yang-Mills theory with N=1, 2, 4, and 8 supersymmeties in terms of the four division algebras: reals (R), complexes (C), quaternions (H) and octonions (O). Tensoring left and right super-Yang-Mills multiplets with N=1, 2, 4, 8 we obtain a magic square RR, CR, CC, HR, HC, HH, OR, OC, OH, OO description of D=3 supergravity with N=2, 3, 4, 5, 6, 8, 9, 10, 12, 16.
UR - http://www.scopus.com/inward/record.url?scp=84898453913&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.112.131601
DO - 10.1103/PhysRevLett.112.131601
M3 - Article
AN - SCOPUS:84898453913
SN - 0031-9007
VL - 112
JO - Physical Review Letters
JF - Physical Review Letters
IS - 13
M1 - 131601
ER -