Abstract
The recent discovery of the weak-field, old magnetar soft gamma repeater (SGR) J0418+5729, whose dipole magnetic field, Bdip, is less than 7.5 x 10(12) G, has raised perplexing questions: how can the neutron star produce SGR-like bursts with such a low magnetic field? What powers the observed X-ray emission when neither the rotational energy nor the magnetic dipole energy is sufficient? These observations, which suggest either a much larger energy reservoir or a much younger true age (or both), have renewed the interest in the evolutionary sequence of magnetars. We examine here a phenomenological model for the magnetic field decay: and compare its predictions with the observed period, P, the period derivative, , and the X-ray luminosity, LX, of magnetar candidates. We find a strong evidence for a dipole field decay on a time-scale of similar to 10(3) yr for the strongest (Bdip similar to 10(15) G) field objects, with a decay index within the range 1 =a < 2 and more likely within 1.5 less than or similar to alpha a less than or similar to 1.8. The decaying field implies a younger age than what is implied by . Surprisingly, even with the younger age, the energy released in the dipole field decay is insufficient to power the X-ray emission, suggesting the existence of a stronger internal field, Bint. Examining several models for the internal magnetic field decay, we find that it must have a very large (greater than or similar to 10(16) G) initial value. Our findings suggest two clear distinct evolutionary tracks the SGR/anomalous X-ray pulsar branch and the transient branch, with a possible third branch involving high-field radio pulsars that age into low-luminosity X-ray dim isolated neutron stars.
Original language | English |
---|---|
Pages (from-to) | 2878-2903 |
Number of pages | 26 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 422 |
Issue number | 4 |
Early online date | 26 Apr 2012 |
DOIs | |
Publication status | Published - Jun 2012 |