TY - JOUR
T1 - Manufacturing and characterisation of polymeric membranes for water treatment and numerical investigation of mechanics of nanocomposite membranes
AU - Acarer, Seren
AU - Pir, İnci
AU - Tüfekci, Mertol
AU - Türkoğlu Demirkol, Güler
AU - Tüfekci, Neşe
PY - 2021
Y1 - 2021
N2 - In this study, polyethersulfone (PES) and polyvinylidene fluoride (PVDF) microfiltration membranes containing polyvinylpyrrolidone (PVP) with and without support layers of 130 and 150 µm thickness are manufactured using the phase inversion method and then experimentally characterised. For the characterisation of membranes, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and pore size analysis are performed, the contact angle and water content of membranes are measured and the tensile test is applied to membranes without support layers. Using the results obtained from the tensile tests, the mechanical properties of the halloysite nanotube (HNT) and nano-silicon dioxide (nano SiO2) reinforced nanocomposite membranes are approximately determined by the Mori–Tanaka homogenisation method without applying any further mechanical tests. Then, plain polymeric and PES and PVDF based nanocomposite membranes are modelled using the finite element method to determine the effect of the geometry of the membrane on the mechanical behaviour for fifteen different geometries. The modelled membranes compared in terms of three different criteria: equivalent stress (von Mises), displacement, and in-plane principal strain. Based on the data obtained from the characterisation part of the study and the numerical analysis, the membrane with the best performance is determined. The most appropriate shape and material for a membrane for water treatment is specified as a 1% HNT doped PVDF based elliptical membrane.
AB - In this study, polyethersulfone (PES) and polyvinylidene fluoride (PVDF) microfiltration membranes containing polyvinylpyrrolidone (PVP) with and without support layers of 130 and 150 µm thickness are manufactured using the phase inversion method and then experimentally characterised. For the characterisation of membranes, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and pore size analysis are performed, the contact angle and water content of membranes are measured and the tensile test is applied to membranes without support layers. Using the results obtained from the tensile tests, the mechanical properties of the halloysite nanotube (HNT) and nano-silicon dioxide (nano SiO2) reinforced nanocomposite membranes are approximately determined by the Mori–Tanaka homogenisation method without applying any further mechanical tests. Then, plain polymeric and PES and PVDF based nanocomposite membranes are modelled using the finite element method to determine the effect of the geometry of the membrane on the mechanical behaviour for fifteen different geometries. The modelled membranes compared in terms of three different criteria: equivalent stress (von Mises), displacement, and in-plane principal strain. Based on the data obtained from the characterisation part of the study and the numerical analysis, the membrane with the best performance is determined. The most appropriate shape and material for a membrane for water treatment is specified as a 1% HNT doped PVDF based elliptical membrane.
KW - Finite element
KW - Membrane
KW - Mori–Tanaka homogenisation
KW - Nanocomposite
U2 - 10.3390/polym13101661
DO - 10.3390/polym13101661
M3 - Article
SN - 2073-4360
VL - 13
JO - Polymers
JF - Polymers
IS - 10
ER -