TY - JOUR
T1 - Memristor-Based Affective Associative Memory Neural Network Circuit with Emotional Gradual Processes
AU - Liao, Meiling
AU - Wang, Chunhua
AU - Sun, Yichuang
AU - Lin, Hairong
AU - Xu, Cong
N1 - © 2022 Springer Nature Switzerland AG. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1007/s00521-022-07170-z
PY - 2022/4/1
Y1 - 2022/4/1
N2 - In the existing affective associative memory neural network circuits, the change of emotions in the affective associative learning and forgetting processes is abrupt and the intensity of emotions is invariable. In fact, the transition from one emotion to another is a gradual process. In this paper, to realize the progressive changes of emotional intensity in the affective associative memory neural network, the gradual learning, gradual forgetting and gradual transferring processes of emotions are proposed and the memristor based circuit of the affective associative memory neural network is designed. In the designed circuit, the firing frequency of output neurons is closely correlated with the intensity of emotions. The higher the firing frequency of output neurons, the stronger the emotional intensity. Based on the associative memory rule, the dynamical change of the synaptic weights leads to the gradual variation of the frequencies of output neurons. Thus, the function of variable emotional intensity can be realized and the gradual processes can be achieved. The PSPICE simulation results are given to verify that the proposed circuit could realize the affective learning, forgetting and transferring functions with gradual processes.
AB - In the existing affective associative memory neural network circuits, the change of emotions in the affective associative learning and forgetting processes is abrupt and the intensity of emotions is invariable. In fact, the transition from one emotion to another is a gradual process. In this paper, to realize the progressive changes of emotional intensity in the affective associative memory neural network, the gradual learning, gradual forgetting and gradual transferring processes of emotions are proposed and the memristor based circuit of the affective associative memory neural network is designed. In the designed circuit, the firing frequency of output neurons is closely correlated with the intensity of emotions. The higher the firing frequency of output neurons, the stronger the emotional intensity. Based on the associative memory rule, the dynamical change of the synaptic weights leads to the gradual variation of the frequencies of output neurons. Thus, the function of variable emotional intensity can be realized and the gradual processes can be achieved. The PSPICE simulation results are given to verify that the proposed circuit could realize the affective learning, forgetting and transferring functions with gradual processes.
U2 - 10.1007/s00521-022-07170-z
DO - 10.1007/s00521-022-07170-z
M3 - Article
SN - 0941-0643
JO - Neural Computing and Applications
JF - Neural Computing and Applications
ER -