Abstract
Paeciliomyces variotii is a thermo-tolerant, ubiquitous fungus commonly found in food products, indoor environments, soil and clinical samples. It is a well-known biocontrol agent used against phytopathogenic fungi and its metabolites have many industrial applications. Rare reports of P. variotii-related human infections have been found in the medical literature. In this study, we report for the first time the infection of P. variotii isolated from a soil sample collected in a rice field with a double-stranded RNA virus, Paeciliomyces variotii partitivirus 1 (PvPV-1) in the family Partitiviridae. P. variotii harboured icosahedral virus particles 30 nm in diameter with two dsRNA segments 1758 and 1356 bp long. Both dsRNA1 and dsRNA2 have a single open reading frame encoding proteins of 63 and 40 kDa, respectively. These proteins have significant similarity to the RNA-dependent RNA polymerase and capsid protein encoded by the genomic segments of several viruses from the family Partitiviridae. Phylogenetic analysis revealed that PvPV-1 belongs to the family Partitiviridae but in an unclassified group/genus, tentatively nominated Zetapartitivirus. PvPV-1 was found to increase the growth rate of the host fungus, as indicated by time course experiments performed on a range of different media for virus-infected and virus-free isogenic lines. Further, dual-culture assays performed for both isogenic lines confirmed the antagonistic potential of P. variotii against other phytopathogenic fungi. The findings of this study assist us in understanding P. variotii as a potential biocontrol agent, together with plant-fungus-virus interactions.
Original language | English |
---|---|
Article number | 001925 |
Pages (from-to) | 1-13 |
Number of pages | 13 |
Journal | Journal of General Virology |
Volume | 104 |
Issue number | 11 |
DOIs | |
Publication status | Published - 28 Nov 2023 |
Keywords
- Humans
- Phylogeny
- Byssochlamys
- Capsid Proteins
- Soil
- Partitiviridae
- zetapartitivirus
- Paecilomyces variotii
- biological control
- growth
- metabolism
- double-stranded RNA