Abstract
BACKGROUND: This study was designed to perform isokinetic knee testing of male judokas competing in the under 73 kg category. The main aims were: to establish the concentric (CON) and eccentric (ECC) strength profile of hamstrings (H) and CON profile of quadriceps (Q) muscles; to evaluate the differences in CON and ECC peak torques (PT) with various strength ratios and their bilateral asymmetries; the calculation of the dynamic control ratio (DCR) and H ECC to CON ratio (HEC); Methods: 12 judokas competing on a national and international levels with a mean age of 19 ± 4 years, a weight of 75 ± 2 kg and with a height of 176 ± 5 cm were tested. All the subjects were right-hand dominant. Isokinetic testing was performed on iMOMENT, SMM isokinetic machine (SMM, Maribor, Slovenia). The paired t-test was used to determine the difference between paired variables. The level of significance was set at p ≤ 0.05; Results: Statistical differences between left (L) and right (R) Q PT (L 266; R 241 Nm), H ECC PT (L 145; R 169 Nm), HQR (L 0.54; R 0.63), DCR (L 0.55; R 0.70), HEC (L 1.02; R 1.14) and PTQ/BW (L 3.57; R 3.23 Nm/kg) were shown. Bilateral strength asymmetries in CON contraction of 13.52% ± 10.04 % for Q, 10.86% ± 7.67 % for H and 22.04% ± 12.13% for H ECC contraction were shown.
CONCLUSIONS: This study reports the isokinetic strength values of judokas in the under 73 kg category, emphasising eccentric hamstring strength and eccentric derived strength ratios DCR and HEC. It was shown that asymmetries are better detected using eccentric testing and that the dominant leg in judokas had stronger eccentric hamstring strength resulting in higher DCR and HEC.
Original language | English |
---|---|
Journal | International Journal of Environmental Research and Public Health (IJERPH) |
Volume | 19 |
Issue number | 1 |
DOIs | |
Publication status | Published - 5 Jan 2022 |
Keywords
- Adolescent
- Adult
- Exercise Therapy
- Hamstring Muscles
- Humans
- Knee Joint
- Male
- Muscle Strength
- Muscle, Skeletal
- Quadriceps Muscle
- Torque
- Young Adult