Morphology and evolution of supraglacial hummocks on debris-covered Himalayan glaciers

Oliver T. Bartlett, Felix S.L. Ng, Ann V. Rowan

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
10 Downloads (Pure)


Thick supraglacial debris layers often have an undulating, hummocky topography that influences the lateral transport of debris and meltwater and provides basins for supraglacial ponds. The role of ablation and other processes associated with supraglacial debris in giving rise to this hummocky topography is poorly understood. Characterizing hummocky topography is a first step towards understanding the feedbacks driving the evolution of debris-covered glacier surfaces and their potential impacts on mass balance, hydrology and glacier dynamics. Here we undertake a geomorphological assessment of the hummocky topography on five debris-covered glaciers in the Everest region of the central Himalaya. We characterize supraglacial hummocks through statistical analyses of their vertical relief and horizontal geometry. Our results establish supraglacial hummocks as a distinct landform. We find that a typical hummock has an elongation ratio of 1.1:1 in the direction of ice flow, length of 214 ± 109 m and width of 192 ± 88 m. Hummocky topography has a greater amplitude across-glacier (15.4 ± 10.9 m) compared to along the glacier flow line (12.6 ± 8.3 m). Consequently, hummock slopes are steeper in the across-glacier direction (8.7 ± 4.3°) than in the direction of ice flow (5.6 ± 4.0°). Longer, wider and higher-amplitude hummocks are found on larger glaciers. We postulate that directional anisotropy in the hummock topography arises because, while the pattern of differential ablation driving topography evolution is moderated by processes including the gravitational redistribution of debris across the glacier surface, it also inherits an orientation preference from the distribution of englacial debris in the underlying ice. Our morphometric data inform future efforts to model these interactions, which should account for additional factors such as the genesis of supraglacial ponds and ice cliffs and their impact on differential ablation.
Original languageEnglish
Pages (from-to)525-539
Number of pages15
JournalEarth Surface Processes and Landforms
Issue number3
Early online date19 Jan 2021
Publication statusPublished - 15 Mar 2021


  • ablation
  • debris
  • glacier
  • Himalaya
  • topography


Dive into the research topics of 'Morphology and evolution of supraglacial hummocks on debris-covered Himalayan glaciers'. Together they form a unique fingerprint.

Cite this