TY - JOUR
T1 - Multi-Observatory Research of Young Stellar Energetic Flares (MORYSEF)
T2 - X-ray Flare Related Phenomena and Multi-epoch Behavior
AU - Getman, Konstantin V.
AU - Feigelson, Eric D.
AU - Waggoner, Abygail R.
AU - Cleeves, L. Ilsedore
AU - Forbrich, Jan
AU - Ninan, Joe P.
AU - Kochukhov, Oleg
AU - Airapetian, Vladimir S.
AU - Dzib, Sergio A.
AU - Law, Charles J.
AU - Rab, Christian
N1 - 32 pages, 9 figures, 8 tables. Accepted for publication in The Astrophysical Journal, October 7, 2024
PY - 2024/10/10
Y1 - 2024/10/10
N2 - The most powerful stellar flares driven by magnetic energy occur during the early pre-main sequence (PMS) phase. The Orion Nebula represents the nearest region populated by young stars, showing the greatest number of flares accessible to a single pointing of Chandra. This study is part of a multi-observatory project to explore stellar surface magnetic fields (with HET-HPF), particle ejections (VLBA), and disk ionization (ALMA) immediately following the detection of PMS super-flares with Chandra. In December 2023, we successfully conducted such a multi-telescope campaign. Additionally, by analyzing Chandra data from 2003, 2012, and 2016, we examine the multi-epoch behavior of PMS X-ray emission related to PMS magnetic cyclic activity and ubiquitous versus sample-confined mega-flaring. Our findings follow. 1) We report detailed stellar quiescent and flare X-ray properties for numerous HET/ALMA/VLBA targets, facilitating ongoing multi-wavelength analyses. 2) For numerous moderately energetic flares, we report correlations (or lack thereof) between flare energies and stellar mass/size (presence/absence of disks) for the first time. The former is attributed to the correlation between convection-driven dynamo and stellar volume, while the latter suggests the operation of solar-type flare mechanisms in PMS stars. 3) We find that most PMS stars exhibit minor long-term baseline variations, indicating the absence of intrinsic magnetic dynamo cycles or observational mitigation of cycles by saturated PMS X-rays. 4) We conclude that X-ray mega-flares are ubiquitous phenomena in PMS stars, which suggests that all protoplanetary disks and nascent planets are subject to violent high-energy emission and particle irradiation events.
AB - The most powerful stellar flares driven by magnetic energy occur during the early pre-main sequence (PMS) phase. The Orion Nebula represents the nearest region populated by young stars, showing the greatest number of flares accessible to a single pointing of Chandra. This study is part of a multi-observatory project to explore stellar surface magnetic fields (with HET-HPF), particle ejections (VLBA), and disk ionization (ALMA) immediately following the detection of PMS super-flares with Chandra. In December 2023, we successfully conducted such a multi-telescope campaign. Additionally, by analyzing Chandra data from 2003, 2012, and 2016, we examine the multi-epoch behavior of PMS X-ray emission related to PMS magnetic cyclic activity and ubiquitous versus sample-confined mega-flaring. Our findings follow. 1) We report detailed stellar quiescent and flare X-ray properties for numerous HET/ALMA/VLBA targets, facilitating ongoing multi-wavelength analyses. 2) For numerous moderately energetic flares, we report correlations (or lack thereof) between flare energies and stellar mass/size (presence/absence of disks) for the first time. The former is attributed to the correlation between convection-driven dynamo and stellar volume, while the latter suggests the operation of solar-type flare mechanisms in PMS stars. 3) We find that most PMS stars exhibit minor long-term baseline variations, indicating the absence of intrinsic magnetic dynamo cycles or observational mitigation of cycles by saturated PMS X-rays. 4) We conclude that X-ray mega-flares are ubiquitous phenomena in PMS stars, which suggests that all protoplanetary disks and nascent planets are subject to violent high-energy emission and particle irradiation events.
KW - astro-ph.SR
KW - astro-ph.HE
KW - hep-ph
M3 - Article
SN - 0004-637X
JO - The Astrophysical Journal
JF - The Astrophysical Journal
ER -