TY - JOUR
T1 - Mutational analysis of potato yellow mosaic geminivirus
AU - Sung, Y.K.
AU - Coutts, Robert H.A.
PY - 1995/7
Y1 - 1995/7
N2 - Mutations have been inserted into the virion and complementary sense ORFs encoding proteins with M(r)s in excess of 9 kDa of both DNA A and DNA B of potato yellow mosaic geminivirus (PYMV). Wild-type and mutant monomeric clones were tested for their ability to replicate, produce PYMV-specific DNA, spread and cause symptoms in Nicotiana benthamiana plants following biolistic inoculation. Dimeric clones of the DNA A mutants were also investigated by agroinoculation of leaf discs. In contrast to N. benthamiana plants agroinoculated with PYMV DNA A, in which the wild-type DNA A component was capable of limited independent replication and spread, both excised DNA A and B components were required for DNA replication and symptom development in plants inoculated by the biolistic method. Mixtures of both genomic components were also infectious for potato plants following biolistic inoculation. Mutations in ORFs AL1, AL2, BR1 and BL1 resulted in clones incapable of infecting N. benthamiana plants. However, the AL2 mutation, but not the AL1 mutation, allowed viral DNA replication in leaf discs. Mutations to both the AR1 and AL3 ORFs produced clones which were infectious in plants but showed a considerable delay in the production of attenuated symptoms as compared to wild-type infections. Mutating the AL3 ORF dramatically reduced viral DNA replication in both whole plants and leaf discs. Mutations to the AL4 ORF produced clones which were as infectious for both N. benthamiana and potato plants as the wild-type clones. Our results are compared with those from mutagenesis studies on related bipartite geminiviruses.
AB - Mutations have been inserted into the virion and complementary sense ORFs encoding proteins with M(r)s in excess of 9 kDa of both DNA A and DNA B of potato yellow mosaic geminivirus (PYMV). Wild-type and mutant monomeric clones were tested for their ability to replicate, produce PYMV-specific DNA, spread and cause symptoms in Nicotiana benthamiana plants following biolistic inoculation. Dimeric clones of the DNA A mutants were also investigated by agroinoculation of leaf discs. In contrast to N. benthamiana plants agroinoculated with PYMV DNA A, in which the wild-type DNA A component was capable of limited independent replication and spread, both excised DNA A and B components were required for DNA replication and symptom development in plants inoculated by the biolistic method. Mixtures of both genomic components were also infectious for potato plants following biolistic inoculation. Mutations in ORFs AL1, AL2, BR1 and BL1 resulted in clones incapable of infecting N. benthamiana plants. However, the AL2 mutation, but not the AL1 mutation, allowed viral DNA replication in leaf discs. Mutations to both the AR1 and AL3 ORFs produced clones which were infectious in plants but showed a considerable delay in the production of attenuated symptoms as compared to wild-type infections. Mutating the AL3 ORF dramatically reduced viral DNA replication in both whole plants and leaf discs. Mutations to the AL4 ORF produced clones which were as infectious for both N. benthamiana and potato plants as the wild-type clones. Our results are compared with those from mutagenesis studies on related bipartite geminiviruses.
UR - http://www.scopus.com/inward/record.url?scp=0029006117&partnerID=8YFLogxK
U2 - 10.1099/0022-1317-76-7-1773
DO - 10.1099/0022-1317-76-7-1773
M3 - Article
AN - SCOPUS:0029006117
SN - 0022-1317
VL - 76
SP - 1773
EP - 1780
JO - Journal of General Virology
JF - Journal of General Virology
IS - 7
ER -