TY - JOUR
T1 - NICER/NuSTAR Characterization of 4U 1957+11: A Near Maximally Spinning Black Hole Potentially in the Mass Gap
AU - Barillier, Erin
AU - Grinberg, Victoria
AU - Horn, David
AU - Nowak, Michael A.
AU - Remillard, Ronald A.
AU - Steiner, James F.
AU - Walton, Dominic J.
AU - Wilms, Jörn
N1 - © 2023. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/
PY - 2023/2/22
Y1 - 2023/2/22
N2 - 4U 1957+11 is a black hole candidate system that has been in a soft X-ray spectral state since its discovery. We present analyses of recent joint NICER and NuSTAR spectra, which are extremely well described by a highly inclined disk accreting into a near maximally spinning black hole. Owing to the broad X-ray coverage of NuSTAR, the fitted spin and inclination are strongly constrained for our hypothesized disk models. The faintest spectra are observed out to 20 keV, even though their hard tail components are almost absent when described with a simple corona. The hard tail increases with luminosity, but shows clear two-track behavior with one track having appreciably stronger tails. The disk spectrum color-correction factor is anticorrelated with the strength of the hard tail (e.g., as measured by the Compton y parameter). Although the spin and inclination parameters are strongly constrained for our chosen model, the mass and distance are degenerate parameters. We use our spectral fits, along with a theoretical prior on color-correction, an observational prior on likely fractional Eddington luminosity, and an observational prior on distance obtained from Gaia studies, to present mass and distance contours for this system. The most likely parameters, given our presumed disk model, suggest a 4.6 M ⊙ black hole at 7.8 kpc observed at luminosities ranging from ≈1.7% to 9% of Eddington. This would place 4U 1957+11 as one of the few actively accreting sources within the mass gap of ≈2–5 M ⊙ where there are few known massive neutron stars or low-mass black holes. Higher mass and distance, however, remain viable.
AB - 4U 1957+11 is a black hole candidate system that has been in a soft X-ray spectral state since its discovery. We present analyses of recent joint NICER and NuSTAR spectra, which are extremely well described by a highly inclined disk accreting into a near maximally spinning black hole. Owing to the broad X-ray coverage of NuSTAR, the fitted spin and inclination are strongly constrained for our hypothesized disk models. The faintest spectra are observed out to 20 keV, even though their hard tail components are almost absent when described with a simple corona. The hard tail increases with luminosity, but shows clear two-track behavior with one track having appreciably stronger tails. The disk spectrum color-correction factor is anticorrelated with the strength of the hard tail (e.g., as measured by the Compton y parameter). Although the spin and inclination parameters are strongly constrained for our chosen model, the mass and distance are degenerate parameters. We use our spectral fits, along with a theoretical prior on color-correction, an observational prior on likely fractional Eddington luminosity, and an observational prior on distance obtained from Gaia studies, to present mass and distance contours for this system. The most likely parameters, given our presumed disk model, suggest a 4.6 M ⊙ black hole at 7.8 kpc observed at luminosities ranging from ≈1.7% to 9% of Eddington. This would place 4U 1957+11 as one of the few actively accreting sources within the mass gap of ≈2–5 M ⊙ where there are few known massive neutron stars or low-mass black holes. Higher mass and distance, however, remain viable.
KW - 330
KW - High-Energy Phenomena and Fundamental Physics
UR - http://www.scopus.com/inward/record.url?scp=85148871536&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/acaeaf
DO - 10.3847/1538-4357/acaeaf
M3 - Article
SN - 0004-637X
VL - 944
SP - 1
EP - 16
JO - The Astrophysical Journal
JF - The Astrophysical Journal
IS - 2
M1 - 165
ER -