Numerical analysis of the axial heat conduction with variable fluid properties in a forced laminar flow tube

Lijing Zhai, Guoqiang Xu, Yongkai Quan, Gu Song, Bensi Dong, Hongwei Wu

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
98 Downloads (Pure)

Abstract

In this article, a theoretical model is developed to investigate the effects of the axial heat conduction on the laminar forced convection in a circular tube with uniform internal heat generation in the solid wall. In the current work, three different fluids, i.e. water, n-decane and air, are selected on purpose since their thermophysical properties show different behavior with temperature. The effects of the axial heat conduction with varying dynamic viscosity and/or varying thermal conductivity are investigated in a systematic manner. Results indicate that the variable-property effects could alleviate the reduction in Nusselt number (Nu) due to the axial heat conduction. For the case of Peclet number (Pe) equal to 100, wall thickness to inner diameter ratio of 1 and solid wall to fluid thermal conductivity ratio of 100, the maximum Nu deviation between constant and variable properties are up to 7.33% at the entrance part for water in the temperature range of 50℃, and 4.45% at the entrance part for n-decane in the temperature range of 120℃, as well as 2.20% at the ending part for air in the temperature range of 475℃, respectively. In addition, the average Nu deviation for water, n-decane and air are 3.24%, 1.94% and 1.74%, respectively. Besides, Nu decreases drastically with decreasing Pe when Pe≤500 and with increasing solid wall to fluid thermal conductivity ratio ( ) when ≤100. It is also found that variable properties have more obvious effects on the velocity profile at the upstream part while more obvious effects on the temperature profile at the downstream part.
Original languageEnglish
Pages (from-to)238-251
Number of pages14
JournalInternational Journal of Heat and Mass Transfer
Volume114
Early online date22 Jun 2017
DOIs
Publication statusPublished - 30 Nov 2017

Fingerprint

Dive into the research topics of 'Numerical analysis of the axial heat conduction with variable fluid properties in a forced laminar flow tube'. Together they form a unique fingerprint.

Cite this