Numerical study on the heat transfer performance of mine ice-storage cooling device

Weishuang Guo, Zujing Zhang, Xing Liang, Hongwei Wu, Liang Ge, Ruiyong Mao

Research output: Contribution to journalArticlepeer-review

Abstract

The thermal performance of the ice-storage cooling device used in the underground mine refuge chamber is poor, which causes a waste of energy. Therefore, it is necessary to improve the heat transfer performance of ice latent heat storage devices. In the current work, the effects of fin height, fin thickness and number of fins on the heat transfer performance of the ice based latent
heat energy storage device were numerically analyzed. The results show that: (i) when the number of fins is 8, the heat exchange characteristics of the ice-storage device reaches the best performance; (ii) increasing the number of fins and the height of the fins can increase the heat exchange area and improve the heat exchange performance; (iii) compared with the ice-storage device without fins, the cooling efficiency of the ice-storage device increased by 34.12% and the melting rate increased by 9.3% after the addition of fins. The addition of fins can improve the heat exchange efficiency of the ice-storage device, while promote the application of phase change energy storage technology in underground mine refuge chambers.
Original languageEnglish
Article number125255
Pages (from-to)1-11
Number of pages11
JournalInternational Journal of Heat and Mass Transfer
Volume223
Early online date9 Feb 2024
DOIs
Publication statusPublished - 15 May 2024

Keywords

  • CFD
  • Fins
  • Heat transfer
  • Ice based latent heat energy storage
  • Mine refuge chamber

Fingerprint

Dive into the research topics of 'Numerical study on the heat transfer performance of mine ice-storage cooling device'. Together they form a unique fingerprint.

Cite this