TY - JOUR
T1 - Operational, regional-scale, chemical weather forecasting models in Europe
AU - Kukkonen, J.
AU - Balk, T.
AU - Schultz, D.
AU - Baklanov, A.
AU - Klein, T.
AU - Miranda, A.I.
AU - Monteiro, A.
AU - Hirtl, M.
AU - Tarvainen, V.
AU - Boy, M.
AU - Peuch, V.H.
AU - Poupkou, A.
AU - Kioutsioukis, I.
AU - Finardi, S.
AU - Sofiev, M.
AU - Sokhi, R.S.
AU - Lehtinen, K.
AU - Karatzas, K.
AU - San Jose, R.
AU - Astitha, M.
AU - Kallos, G.
AU - Schaap, M.
AU - Reimer, E.
AU - Jakobs, H.
AU - Eben, K.
N1 - Original article can be found at : http://www.atmos-chem-phys-discuss.net/ Published under Creative Commons Attribution 3.0 License.
PY - 2011
Y1 - 2011
N2 - Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed in this article include how weather forecasting and atmospheric chemistry models are integrated into chemical weather forecasting systems, how physical processes are incorporated into the models through parameterization schemes, how the model architecture affect the predicted variables, and how air chemistry and aerosol processes are formulated. In addition, we discuss sensitivity analysis and evaluation of the models, user operational requirements, such as model availability and documentation, and output availability and dissemination. In this manner, this article allows for the evaluation of the relative strengths and weaknesses of the various modelling systems and modelling approaches. Finally, this article highlights the most prominent gaps of knowledge for chemical weather forecasting models and suggests potential priorities for future research directions, for the following selected focus areas: emission inventories, the integration of numerical weather prediction and atmospheric chemical transport models, boundary conditions and nesting of models, data assimilation of the various chemical species, improved understanding and parameterization of physical processes, better evaluation of models against data and the construction of model ensembles.
AB - Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed in this article include how weather forecasting and atmospheric chemistry models are integrated into chemical weather forecasting systems, how physical processes are incorporated into the models through parameterization schemes, how the model architecture affect the predicted variables, and how air chemistry and aerosol processes are formulated. In addition, we discuss sensitivity analysis and evaluation of the models, user operational requirements, such as model availability and documentation, and output availability and dissemination. In this manner, this article allows for the evaluation of the relative strengths and weaknesses of the various modelling systems and modelling approaches. Finally, this article highlights the most prominent gaps of knowledge for chemical weather forecasting models and suggests potential priorities for future research directions, for the following selected focus areas: emission inventories, the integration of numerical weather prediction and atmospheric chemical transport models, boundary conditions and nesting of models, data assimilation of the various chemical species, improved understanding and parameterization of physical processes, better evaluation of models against data and the construction of model ensembles.
U2 - 10.5194/acpd-11-5985-2011
DO - 10.5194/acpd-11-5985-2011
M3 - Article
SN - 1680-7367
VL - 11
SP - 5985
EP - 6162
JO - Atmospheric Chemistry and Physics Discussions
JF - Atmospheric Chemistry and Physics Discussions
IS - 2
ER -