TY - JOUR
T1 - Predicting voluntary movements from motor cortical activity with neuromorphic hardware
AU - Lungu, Iulia-Alexandra
AU - Riehle, Alexa
AU - Nawrot, Martin
AU - Schmuker, Michael
N1 - This document is the Accepted Manuscript version of the following article: A. Lungu, A. Riehle, M. P. Nawrot and M. Schmuker, "Predicting voluntary movements from motor cortical activity with neuromorphic hardware," in IBM Journal of Research and Development, Vol. 61, no. 2/3, pp. 5:1-5:12, March-May 1 2017.
The version of record is available online at doi: 10.1147/JRD.2017.2656063.
© 2017 by International Business Machines Corporation. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2017/5/23
Y1 - 2017/5/23
N2 - Neurons in the mammalian motor cortices encode physical parameters of voluntary movements during planning and execution of a motor task. Brain-machine interfaces can decode limb movements from the activity of these neurons in real time. The future goal is to control prosthetic devices in severely paralyzed patients or to restore communication if the ability to speak or make gestures is lost. Here, we implemented a spiking neural network that decodes movement intentions from individual neuronal activity recorded in the motor cortex of a monkey. The network runs on neuromorphic hardware and performs its computations in a purely spike-based fashion. It incorporates an insect-brain-inspired, three-layer architecture with 176 neurons. Cortical signals are filtered using lateral inhibition, and the network is trained in a supervised fashion to predict two opposing directions of the monkey’s arm reaching movement before the movement is carried out. Our network operates on the actual spikes that have been emitted by motor cortical neurons, without the need to construct intermediate non-spiking representations. Using a pseudo-population of 12 manually-selected neurons, it reliably predicts the movement direction with an accuracy of 89.32 % on unseen data after only 100 training trials. Our results provide a proof of concept for the first-time use of a neuromorphic device for decoding movement intentions.
AB - Neurons in the mammalian motor cortices encode physical parameters of voluntary movements during planning and execution of a motor task. Brain-machine interfaces can decode limb movements from the activity of these neurons in real time. The future goal is to control prosthetic devices in severely paralyzed patients or to restore communication if the ability to speak or make gestures is lost. Here, we implemented a spiking neural network that decodes movement intentions from individual neuronal activity recorded in the motor cortex of a monkey. The network runs on neuromorphic hardware and performs its computations in a purely spike-based fashion. It incorporates an insect-brain-inspired, three-layer architecture with 176 neurons. Cortical signals are filtered using lateral inhibition, and the network is trained in a supervised fashion to predict two opposing directions of the monkey’s arm reaching movement before the movement is carried out. Our network operates on the actual spikes that have been emitted by motor cortical neurons, without the need to construct intermediate non-spiking representations. Using a pseudo-population of 12 manually-selected neurons, it reliably predicts the movement direction with an accuracy of 89.32 % on unseen data after only 100 training trials. Our results provide a proof of concept for the first-time use of a neuromorphic device for decoding movement intentions.
U2 - 10.1147/JRD.2017.2656063
DO - 10.1147/JRD.2017.2656063
M3 - Article
SN - 0018-8646
VL - 61
SP - 5:1-5:12
JO - IBM Journal of Research and Development
JF - IBM Journal of Research and Development
IS - 2
M1 - 5
ER -